
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

REST AND EXPRESS

PART 2

Outline

1.  Introduction – What Node is all about

2.  Events – Nodes event-driven, non-blocking I/O model

3.  Node Modules – The building blocks of Node

4.  Express – A Framework for Node

5.  REST – The architectural style of the Web

6.  API Design – Exposing Application Functionality

7.  REST in Express – Leveraging URLs, URI’s and HTTP

8.  Demo – Labs in action

07	NODEJS	-	PART	2	 3	

Outline

1.  Introduction – What Node is all about

2.  Events – Nodes event-driven, non-blocking I/O model

3.  Node Modules – The building blocks of Node

4.  Express – A Framework for Node

5.  REST – The architectural style of the Web

6.  API Design – Exposing Application Functionality

7.  REST in Express – Leveraging URLs, URI’s and HTTP

8.  Demo – Labs in action

07	NODEJS	-	PART	2	 4	

REST

THE ARCHITECTURAL STYLE OF THE WEB

07	NODEJS	-	PART	2	 5	

REST (REpresentational State Transfer)

	 The architectural style of the web

So what the %&*@#$ does that even mean?? J

	 REST is a set of design criteria and not the physical structure (architecture) of
the system

	 REST is not tied to the ‘Web’ i.e. doesn’t depend on the mechanics of HTTP

	 However, ‘Web’ applications are the most prevalent – hence RESTful
architectures run off of it

	 Coined by Roy Fielding in his PhD thesis

6	07	NODEJS	-	PART	2	

Understanding REST

Based on content from chapter #3 of:

RESTful Web Services (O’Reilly)

-Richardson & Ruby

7	07	NODEJS	-	PART	2	

Understanding REST – Resources

	 Anything that’s important enough to be referenced as a thing in itself

	 Something that can be stored on a computer and represented as a stream
of bits:

◦  A document (e.g. information about WIT)

◦  A Row in a DB (e.g. a ‘Donation’)

◦  Output of executing an algorithm (e.g. 100th Prime number or Google Search J)

8	07	NODEJS	-	PART	2	

URIs and Resources

	 URI is an ‘address’ of a resource

	 A resource must have at least one URI

	 No URI à Not a resource (i.e. it’s really not on the web, so to speak J)

	 URIs should be descriptive (human parseable) and have structure. For
Example:

◦ http://www.ex.com/software/releases/latest.tar.gz

◦ http://www.ex.com/map/roads/USA/CA/17_mile_drive

◦ http://www.ex.com/search/cs578

◦ http://www.ex.com/sales/2012/Q1

◦ http://www.ex.com/relationships/Alice;Bob

9	07	NODEJS	-	PART	2	

URIs and Resources (Cont’d)

	 Not so good URIs (everything as query parameters):

◦  http://www.ex.com?software=VisualParadigm&release=latest &filetype=tar&method=fetch

◦  http://www.ex.com?

sessionId=123456789087654321234567876543234567865432345678876543&itemId=9
AXFE5&method=addToCart

	 URIs need not have structure/predictability but are valuable (and easier) for the
(human) clients to navigate through the application

	 May have multiple URIs to refer to same resource – convenient but confusing

	 Each URI must refer to a unique resource – although they may point to the
‘same one’ at some point in time (Ex.: …/latest.tar.gz and …/v1.5.6.tar.gz)

10	07	NODEJS	-	PART	2	

Understanding REST - Addressability

	 An application is addressable if it exposes interesting aspects of its data set
as resources

	 An addressable application exposes a URI for every piece of information it
might conceivably serve (usually infinitely many J)

	 Most important from end-user perspective

	 Addressability allows one to bookmark URIs or embed them in
presentations/books etc. Ex.:

◦  google.com/search?q=CS577+USC

◦  Instead of

◦  Go to www.google.com

◦  Enter ‘CS577 USC’ (without quotes in search box)

◦  Click ‘Search’ or hit the ‘Enter key’

11	07	NODEJS	-	PART	2	

REST Principle #1

THE KEY ABSTRACTION OF INFORMATION IS A RESOURCE, NAMED BY A

URI. ANY INFORMATION THAT CAN BE NAMED CAN BE A RESOURCE

Understanding REST - Statelessness

	 Every HTTP request happens in complete isolation

◦  Server NEVER relies on information from prior requests

◦  There is no specific ‘ordering’ of client requests (i.e. page 2 may be requested before

page 1)

◦  If the server restarts a client can resend the request and continue from where it left off

	 Possible states of a server are also resources and should be given their own
URIs!

13	07	NODEJS	-	PART	2	

REST Principle #2

ALL INTERACTIONS ARE CONTEXT-FREE: EACH INTERACTION CONTAINS ALL

OF THE INFORMATION NECESSARY TO UNDERSTAND THE REQUEST,
INDEPENDENT OF ANY OTHER REQUESTS THAT MAY HAVE PRECEDED IT.

Understanding REST - Representations

	 Resources are NOT data – they are an abstraction of how the information/
data is split up for presentation/consumption

	 The web server must respond to a request by sending a series of bytes in a
specific file format, in a specific language – i.e. a representation of the
resource

◦ Formats: XML/JSON, HTML, PDF, PPT, DOCX...

◦ Languages: English, Spanish, Hindi, Portuguese…

15	07	NODEJS	-	PART	2	

Which Representation to Request?

	 Style 1: Distinct URI for each representation:

◦  ex.com/press-release/2012-11.en (English)

◦  ex.com/press-release/2012.11.fr (French)

◦ …and so on

	 Style 2: Content Negotiation

◦  Expose Platonic form URI:

◦  ex.com/press-release/2012-11

◦  Client sets specific HTTP request headers to signal what representations it’s willing to
accept

◦  Accept: Acceptable file formats

◦  Accept-Language: Preferred language

16	07	NODEJS	-	PART	2	

REST Principle #3

THE REPRESENTATION OF A RESOURCE IS A SEQUENCE OF BYTES, PLUS

REPRESENTATION METADATA TO DESCRIBE THOSE BYTES. THE PARTICULAR
FORM OF THE REPRESENTATION CAN BE NEGOTIATED BETWEEN REST

COMPONENTS

Understanding REST – Uniform Interface

	 HTTP Provides 4 basic methods for CRUD (create, read, update, delete)
operations:

◦  GET: Retrieve representation of resource

◦  PUT: Update/modify existing resource (or create a new resource)

◦  POST: Create a new resource

◦  DELETE: Delete an existing resource

	 Another 2 less commonly used methods:

◦  HEAD: Fetch meta-data of representation only (i.e. a metadata representation)

◦  OPTIONS: Check which HTTP methods a particular resource supports

18	07	NODEJS	-	PART	2	

Be	clear	of	the	difference	between	PUT	vs.	POST		

HTTP Request/Response

Method	 Request	En.ty-Body/Representa.on	 Response	En.ty-Body/Representa.on	

GET	 (Usually)	Empty	RepresentaSon/enSty-body	
sent	by	client	

Server	returns	representaSon	of	resource	
in	HTTP	Response	

DELETE	 (Usually)	Empty	RepresentaSon/enSty-body	
sent	by	client	

Server	may	return	enSty-body	with	status	
message	or	nothing	at	all	

PUT	 Client’s	proposed	representaSon	of	
resource	in	enSty-body	

Server	may	respond	back	with	status	
message	or	with	copy	of	representaSon	
or	nothing	at	all	

POST	 Client’s	proposed	representaSon	of	
resource	in	enSty-body	

Server	may	respond	back	with	status	
message	or	with	copy	of	representaSon	
or	nothing	at	all	

19	07	NODEJS	-	PART	2	(enSty-body	==	h\p	term	for	content)	

REST Principle #4

COMPONENTS PERFORM ONLY A SMALL SET OF WELL-DEFINED METHODS

ON A RESOURCE PRODUCING A REPRESENTATION TO CAPTURE THE
CURRENT OR INTENDED STATE OF THAT RESOURCE AND TRANSFER THAT

REPRESENTATION BETWEEN COMPONENTS.

THESE METHODS ARE GLOBAL TO THE SPECIFIC ARCHITECTURAL
INSTANTIATION OF REST; FOR INSTANCE, ALL RESOURCES EXPOSED VIA

HTTP ARE EXPECTED TO SUPPORT EACH OPERATION IDENTICALLY

Understanding REST – Safety & Idempotence

	 Idempotence: Executing the same operation multiple times is the
same as executing it once

◦ Deleting an already DELETE-ed resource is still deleted

◦ Updating an already updated resource with PUT has no effect

	 Safety: The request doesn’t change server state i.e. no side effects à
no changing state of resource

◦ Making 10 requests is same as making one or none at all

	 When correctly used GET and HEAD requests are safe and GET,
HEAD, PUT, DELETE are idempotent. POST is neither safe nor
idempotent

21	07	NODEJS	-	PART	2	

Safety and Idempotence

	 Why do they matter?

	 Lets a client make reliable HTTP requests over an unreliable connection

	 If no response then just reissue the request

	 Some common mistakes/misuses:

◦  GET https://some.api.com/item/delete

◦  (Overloaded)POST https://some.api.com/item

◦  Entity-body: Method=fetch

◦  Or setting different query parameters

◦  Basically using POST for everything J

22	07	NODEJS	-	PART	2	

REST Principle #5

IDEMPOTENT OPERATIONS AND REPRESENTATION METADATA ARE

ENCOURAGED IN SUPPORT OF CACHING AND REPRESENTATION REUSE.

Steps to a RESTful Architecture

Read the Requirements and turn them into resources J

1.  Figure out the data set

2.  Split the data set into resources

For each kind of resource:

3.  Name resources with URIs

4.  Expose a subset of uniform interface

5.  Design representation(s) accepted from client (Form-data, JSON, XML to be sent to server)

6.  Design representation(s) served to client (file-format, language and/or (which) status message

to be sent)

7.  Consider typical course of events: sunny-day scenarios

8.  Consider alternative/error conditions: rainy-day scenarios

24	07	NODEJS	-	PART	2	

A Bit on HTTP Status/Response Codes

	 HTTP is built in with a set of status codes for various types of scenarios:

◦  2xx Success (200 OK, 201 Created…)

◦  3xx Redirection (303 See other)

◦  4xx Client error (404 Not Found)

◦  5xx Server error (500 Internal Server Errror)

	 Leverage existing status codes to handle sunny/rainy-day scenarios in your
application!

25	07	NODEJS	-	PART	2	

Some General Points to Note

	 Authentication/Authorization data sent with every request

	 Sessions are NOT RESTful (i.e. sessions = state)

	 Cookies, if used appropriately (for storing client state) are RESTful

	 100% RESTful architecture is not practical and not valuable either

	 Need to be unRESTful at times (Eg.: Login/Logout)

◦  These are actions and not a resource per se

◦  Usually POST requests sent to some URI for logging in/out

◦  Advantages: Gives login page, provides ability of “Forgot your password” type functionalities etc.

◦  Benefits of UnRESTful-ness outweigh adherence to style

	 Some server frameworks only support GET/POST forcing one to overload POST
requests for PUT/DELETE

26	07	NODEJS	-	PART	2	

Benefits of RESTful Design

	 Simpler and intuitive design – easier navigability

	 Server doesn’t have to worry about client timeout

	 Clients can easily survive a server restart (state controlled by client instead of server)

	 Easy distribution – since requests are independent – handled by different servers

	 Scalability: As simple as connecting more servers J

	 Stateless applications are easier to cache – applications can decide which response
to cache without worrying about ‘state’ of a previous request

	 Bookmark-able URIs/Application States

	 HTTP is stateless by default – developing applications with it gets above benefits
(unless you wish to break them on purpose J)

27	07	NODEJS	-	PART	2	

API Design

EXPOSING APPLICATION FUNCTIONALITY

07	NODEJS	-	PART	2	 28	

API Design

	 APIs expose functionality of an application or service

	 Designer must:

q Understanding enough of the important details of the application for

which an API is to be created,

q Model the functionality in an API that addresses all use cases that come

up in the real world, following the RESTful principles as closely as
possible.

07	NODEJS	-	PART	2	 29	

Nouns are good, verbs are bad

	 Keep your base URL simple and intuitive

	 2 base URLs per resource

	 The first URL is for a collection; the second is for a specific element in the
collection.

	 Example

◦  /contacts

◦  /contacts/1234

	 Keep verbs out of your URLs

07	NODEJS	-	PART	2	 30	

REST in Express

LEVERAGING URL’S, URI’S AND HTTP

07	NODEJS	-	PART	2	 31	

RESTful Frameworks

	 Almost all frameworks allow you to:

1.  Specify URI Patterns for routing HTTP requests

2.  Set allowable HTTP Methods on resources

3.  Return various different representations (JSON, XML, HTML most popular)

4.  Support content negotiation

5.  Implement/follow the studied REST principles

	  Express is just ONE of the many frameworks…

32	07	NODEJS	-	PART	2	

List of REST Frameworks

	 Rails Framework for Ruby (Ruby on Rails)

	 Django (Python)

	 Jersey /JAX-RS (Java)

	 Restlet (Java)

	 Sinatra (Ruby)

	 Express.js (JavaScript/Node.js)

	 …and many others: View complete list at:
http://code.google.com/p/implementing-rest/wiki/RESTFrameworks

33	07	NODEJS	-	PART	2	

REST in Express

	 We can easily implement REST APIS using express routing functionality

	 Functionality usually implemented in api routing script

07	NODEJS	-	PART	2	 34	

Donationweb

BEHIND THE SCENES http://donationweb-4-0.herokuapp.com	

Donation: Resource, URIs & Methods

{…}	=	variable	value;	changeable	by	user/applicaSon	to	refer	to	specific	resource	

36	07	NODEJS	-	PART	2	

Resource	 URI	(structure)	 HTTP	Request	

List	of	DonaSons	 /donaSons	 GET	

Get	a	Single	DonaSon	 /donaSons/{id}	 GET	

Upvote	a	DonaSon	 /donaSons/{id}/votes	 PUT	

Delete	a	DonaSon	 /donaSons/{id}	 DELETE	

Update	a	DonaSon	 /donaSons/{id}	 PUT	

Add	a	DonaSon	 /donaSons/{id}	 POST	

We’ll look at this Use Case as an example… !

Creating the Model – Server Side

37	07	NODEJS	-	PART	2	

Creating the Routes (1) – Server Side

38	07	NODEJS	-	PART	2	

N.B.	on	‘imports’	

Creating the Routes (2) – Server Side

39	07	NODEJS	-	PART	2	

The Request object

40	 07	NODEJS	-	PART	2	

The req object represents the HTTP request.

by convention, the object is always referred to as 'req',
Response is 'res'

Can use it to access the request query string, parameters, body,
HTTP headers.

app.get('/user/:id', function(req, res)
{ res.send('user ' + req.params.id); });

Request Properties

	 req.param(name)
Parameter 'name', if present

	 req.query
Parsed query string (from URL)

	 req.body
Parsed request body

	 req.files
Uploaded files

	 req.cookies.foo
Value of cookie 'foo', if present

	 req.get(field)
Value of request header 'field'

	 req.ip
Remote IP address

	 req.path
URL path name

	 req.secure
Is HTTPS being used?

	 ...

41	 07	NODEJS	-	PART	2	

Response Object

	 The res object represents the HTTP response that an Express
app sends back when it gets an HTTP request.

app.get('/user/:id', function(req, res)
{ res.send('user ' + req.params.id); });

07	NODEJS	-	PART	2	 42	

Response Properties

	 res.json([body])

◦ Sends a JSON response. This method is identical to res.send() with an

object or array as the parameter. #
#
res.json({ user: 'tobi' });
res.status(500).json({ error: 'message' });

07	NODEJS	-	PART	2	 43	

Response Properties

	 res.send([body])

◦ Sends the HTTP response.

◦ The body parameter can be a String, an object, or an Array.

For example:

res.send({ some: 'json' });

res.send('<p>some html</p>');
res.status(404).send('Sorry, we cannot find
that!');

res.status(500).send({ error: 'something blew
up' });

07	NODEJS	-	PART	2	 44	

Response Properties

	 res.format(object)

◦ Performs content-negotiation on the Accept HTTP header on the request

object#

res.format({
 'text/plain': function(){
 res.send('hey');
 },
 'text/html': function(){
 res.send('<p>hey</p>');
 },
 'application/json': function(){
 res.send({ message: 'hey' });
 },
 'default': function() {
 // log the request and respond with 406
 res.status(406).send('Not Acceptable');
 }
});

07	NODEJS	-	PART	2	 45	

Response Properties

	 res.status(code)
Sets status 'code' (e.g., 200)

	 res.set(n,v)
Sets header 'n' to value 'v'

	 res.cookie(n,v)
Sets cookie 'n' to value 'v'

	 res.clearCookie(n)
Clears cookie 'n'

	 res.redirect(url)
Redirects browser to new URL

	 res.send(body)
Sends response (HTML, JSON...)

	 res.type(t)
Sets Content-type to t

	 res.sendfile(path)
Sends a file

	 ...

46	 07	NODEJS	-	PART	2	

Creating the Routes (1) – Client Side

47	07	NODEJS	-	PART	2	

Creating the Controllers – Client Side

48	07	NODEJS	-	PART	2	

addDonaSon()	

Creating the Views – Client Side

49	07	NODEJS	-	PART	2	

addDonaSon()	

The	.ejs	pages	are	
normal	HTML	pages	
but	can	have	'blanks'	
in	them	that	we	can	fill	
with	data	at	runSme	
	
Need	a	new	page?	Just	
add	a	new	controller!	

Serving static content

	 Your web app will probably have static files

◦  Examples: Images, client-side JavaScript, ...

	 Writing an app.get(...) route every time would be too cumbersome

	 Solution: express.static

50	 07	NODEJS	-	PART	2	

app.use(express.static(path.join(__dirname, 'public')));

Where	content	lives	in	the	file	
system	on	the	server	

How to structure the app

	 Your web app will have several pieces:

◦ Main application logic

◦  'Routes' for displaying specific pages (/login, /main, ...)

◦ Database model (get/set functions, queries, ...)

◦ Views (HTML or EJS files)

	 Suggestion: Keep them in different directories

◦  routes/ for the route functions

◦ model/ for the database functions

◦ views/ for the HTML pages and EJS templates

◦ Keep only app.js/package.json/config... in main directory

51	 07	NODEJS	-	PART	2	

Architectural Styles
Encountered With
REST

REST ISN’T ALONE J

Model-View-Controller (MVC)

	 Most commonly employed style with frameworks:

◦ Model: Classes responsible for talking to the DB and fetching/populating objects for the

application

◦  Controller: Acts as URI Router i.e. routes calls to specific resources and invokes actions

based on the corresponding HTTP Method

◦  View: Usually the resource itself that returns the content/representation as requested by

the client

	 May/may-not be true MVC but parts of application usually split as such –
leading to clean code organization/separation of concerns

53	07	NODEJS	-	PART	2	

Client-Side MVC

	 JS heavy pages lead to spaghetti code

	 Frameworks like Backbone.js, Ember.js implement MVC paradigm on web
page itself making code easier to manage/maintain

◦ Models: Data that is fetched/saved from/to the server

◦  Views: HTML elements that display the data and change if the data is updated

◦  Controller: Intercepts user-events and sends appropriate messages to model/views

	 JS Models communicate with server (controller) to update themselves

	 Client-side MVC becoming very popular and critical for ‘front-heavy’/smart-
client web-apps based on Ajax

54	07	NODEJS	-	PART	2	

Event-Based Architectures

	 Exclusively client-side:

◦  Required for communicating between various parts of the JS application/elements

◦  Based on the Observer pattern – an event bus is used for sending/receiving messages

across components

	 Exclusively server-side:

◦  For implementing asynchronous communications between different process (e.g.:

sending email after a particular action)

◦  Communicating with other processes on the network via a Message oriented

Middleware (MoM) (e.g.: RabbitMQ, WebSphereMQ etc.)

◦  Communicating with client-side apps – using Node.js or Pub/Sub web services like

PubNub.com or Pusher.com

55	07	NODEJS	-	PART	2	

Conclusion

	 Just REST isn’t enough

	 100% REST isn’t the goal either

	 Various architectural styles work together in tandem for creating distributed
web-based systems

	 MVC on client-side is gaining high momentum

	 Event-based communication exceedingly important for near-real-time/
asynchronous applications (reason for Node.js popularity)

	 You can learn the REST by reading a few books and designing/
implementing a few systems J

56	07	NODEJS	-	PART	2	

Great Resources

	 Official Tutorial – https://nodejs.org/documentation/tutorials/

	 Official API – https://nodejs.org/api/

	 Developer Guide – https://nodejs.org/documentation

	 Video Tutorials – http://nodetuts.com

	 Video Introduction – https://www.youtube.com/watch?v=FqMIyTH9wSg

	 YouTube Channel – https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg

	 Articles, explanations, tutorials – https://nodejs.org/community/

07	NODEJS	-	PART	2	 57	

Questions?

07	NODEJS	-	PART	2	 58	

