
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

SERVER SIDE JAVASCRIPT

PART 1

Outline

1.  Introduction – What Node is all about

2.  Events – Nodes Event-Driven, Non-Blocking I/O model

3.  Node Modules – The Building Blocks of Node

4.  Express – A Framework for Node

5.  REST – The Architectural Style of the Web

6.  API Design – Exposing Application Functionality

7.  REST in Express – Leveraging URLs, URI’s and HTTP

8.  Demo – Labs in action

06	NODEJS	-	PART	1	 3	

Outline

1.  Introduction – What Node is all about

2.  Events – Nodes Event-Driven, Non-Blocking I/O model

3.  Node Modules – The Building Blocks of Node

4.  Express – A Framework for Node

5.  REST – The Architectural Style of the Web

6.  API Design – Exposing Application Functionality

7.  REST in Express – Leveraging URLs, URI’s and HTTP

8.  Demo – Labs in action

06	NODEJS	-	PART	1	 4	

Introduction

WHAT NODE IS ALL ABOUT

06	NODEJS	-	PART	1	 5	

Background

	 V8 is an open source JavaScript engine developed by Google. Its written in C/C++
and is used in Google Chrome Browser (and is fast!)

	 Node.js runs on V8.

	 It was created by Ryan Dahl in 2009.

	 Finally out of Beta phase.

◦  Latest LTS (Long Term Support) Version is v6.11.3 (see next Slide)

◦  Latest stable current version is v8.5.0 (nodejs.org) (as at 22/09/17)

	 Is Open Source. It runs well on Linux systems, can also run on Windows systems.

	 It comes with a built-in HTTP server library

	 It has lots of libraries and tools available; even has its own package manager (npm)

06	NODEJS	-	PART	1	 6	

Node.js  
Release  
Working  
Group

06	NODEJS	-	PART	1	 7	

Node.js  
Release  
Working  
Group

06	NODEJS	-	PART	1	 8	

Introduction: Basic

	 In simple words Node.js is ‘server-side JavaScript’.

	 In not-so-simple words Node.js is a high-performance network applications
framework, well optimized for high concurrent environments.

	 It’s a command line tool.

	 In ‘Node.js’ , ‘.js’ doesn’t mean that its solely written in JavaScript. It is
40% JS and 60% C++. (next slide)

	 From the official site:

‘Node's goal is to provide an easy way to build scalable network programs’ - (from
nodejs.org!)

06	NODEJS	-	PART	1	 9	

V8
Thread

Pool
(libeio)

Event
Loop
(libev)

Node Bindings
(socket, http, etc.)

Node Standard Library

C	

C++	

JavaScript	

Introduction: Node Architecture

06	NODEJS	-	PART	1	 10	

Introduction: Advanced (& Confusing)

	 Node.js uses an event-driven, non-blocking I/O model, which makes it
lightweight. (again, from nodejs.org!)

	 It makes use of event-loops via JavaScript’s callback functionality to implement
the non-blocking I/O.

	 Programs for Node.js are written in JavaScript but not in the same JavaScript we
are use to. There is no DOM implementation provided by Node.js, i.e. you can not
do this:

var element = document.getElementById(“elementId”);

	 Everything inside Node.js runs in a single-thread (which must never block!).

	 If your program needs to wait for something (e.g., a response from some server
you contacted), it must provide a callback function

06	NODEJS	-	PART	1	 11	

 
Nodies are not just Silicon Valley
hipsters ! 

And more recently….

Local	
Company	

06	NODEJS	-	PART	1	 12	

Tools & Tech used with NodeJS (last 12 months)

06	NODEJS	-	PART	1	 13	

When to use Node.js?

	 Node.js is good for creating streaming based real-time services, web chat
applications, static file servers etc.

	 If you need high level concurrency and not worried about CPU-cycles.

	 If you are great at writing JavaScript code because then you can use the
same language at both the places: server-side and client-side.

	 More can be found at:
http://stackoverflow.com/questions/5062614/how-to-decide-when-to-use-
nodejs

06	NODEJS	-	PART	1	 14	

Some Node.js benchmarks

Taken	from:	
h"p://code.google.com/p/node-js-vs-apache-php-benchmark/wiki/
Tests	
A	benchmark	between	Apache+PHP	and	node.js,	
shows	the	response	Rme	for	1000	concurrent	
connecRons	making	10,000	requests	each,	for	5	tests.		

Taken	from:	h"p://nodejs.org/jsconf2010.pdf	
The	benchmark	shows	the	response	Rme	
in	milli-secs	for	4	evented	servers.	

06	NODEJS	-	PART	1	

15	

When to not use Node.js

	 When you are doing heavy and CPU intensive calculations on server side,
because event-loops are CPU hungry.

	 Node.js API is finally out of beta, but it will keep on changing from one
revision to another and there is a very little backward compatibility. A lot of
the packages are also unstable. Therefore is not production ready just yet.

	 Node.js is a no match for enterprise level application frameworks like
Spring(java), Django(python), Symfony(php) etc. Applications written on
such platforms are meant to be highly user interactive and involve complex
business logic.

	 Read further on disadvantages of Node.js on Quora:
http://www.quora.com/What-are-the-disadvantages-of-using-Node-js

06	NODEJS	-	PART	1	 16	

Events

NODES EVENT-DRIVEN, NON-BLOCKING I/O MODEL

06	NODEJS	-	PART	1	 17	

Some Theory: Events

●  Generally, input/output (I/O) is slow.

–  Reading/writing to data store, probably across a network.
●  Calculations in cpu are fast.

–  2+2=4

●  Most time in programs is spent waiting for I/O to complete.
–  In applications with lots of concurrent users (e.g. web servers), you can't just stop

everything and wait for I/O to complete.

●  Solutions to deal with this are:
–  Blocking code with multiple threads of execution (e.g. Apache, IIS Servers)
–  Non-blocking, event-based code in single thread (e.g. NGINX, Node.js Servers)

06	NODEJS	-	PART	1	 18	

Some Theory: Event-loops

	 Event-loops	are	the	core	of	event-driven	programming,	almost	all	the	UI	programs	use	event-
loops	to	track	the	user	event,	for	example:	Clicks,	Ajax	Requests	etc.	

Client

Event	loop		
(main	thread)	

C++ Threadpool
(worker threads)

Clients send HTTP requests
 to Node.js server

An Event-loop is woken up by OS,
passes request and response objects
to the thread-pool

Long-running jobs run
 on worker threads

Response is sent
back to main thread
via callback

Event loop returns
result to client

06	NODEJS	-	PART	1	 19	

V8
Thread

Pool
(libeio)

Event
Loop
(libev)

Node Bindings
(socket, http, etc.)

Node Standard Library

Warning! Be careful to keep
CPU intensive operations off
the event loop.

Some Theory: Event-loops

06	NODEJS	-	PART	1	 20	

Some Theory: Non-Blocking I/O

	 Traditional I/O

var	result	=	db.query(“select	x	from	table_Y”);	
doSomethingWith(result);	//wait	for	result!		
doSomethingWithOutResult();	//execution	is	blocked!	
	

	 Non-traditional, Non-blocking I/O

db.query(“select	x	from	table_Y”,function	(result){		
	doSomethingWith(result);	//wait	for	result!	
});	
doSomethingWithOutResult();	//executes	without	any	delay!	
	
	

06	NODEJS	-	PART	1	 21	

Blocking (Traditional)

●  Traditional code waits for input before proceeding

(Synchronous)

●  The thread on a server "blocks" on I/O and resumes when it

returns.

06	NODEJS	-	PART	1	 22	

Non-blocking (Node)

●  Node.js code runs in a Non-blocking (Asynchronous), event-

based Javascript thread

–  No overhead associated with threads

–  Good for high concurrency (i.e. lots of client requests at the same time)

06	NODEJS	-	PART	1	 23	

Blocking vs. Non-blocking

●  Threads consume resources

–  Memory on stack

–  Processing time for context switching etc.

●  No thread management on single threaded apps

–  Just execute “callbacks” when event occurs

–  Callbacks are usually in the form of anonamous functions.

06	NODEJS	-	PART	1	 24	

Blocking | I/O Model

Example: ways in which a server can
process orders from customers

Hi, my name is Apache.
How may I take your

order?

•  The server serves one customer at a
time.

•  As each customer is deciding on their

order, the server sits and waits.

•  When the customer decides on an

order, the server processes their order
and moves on to the next customer.

06	NODEJS	-	PART	1	 25	

Blocking | I/O Model

Hmm…	sRll	
thinking...	

OMG	she’s	blocking	me.		
I	could	have	ordered	by	

now	!!	

06	NODEJS	-	PART	1	 26	

Blocking | I/O Model

Hmm…	sRll	
thinking...	

Pseudocode:
	
order1 = db.query(“SELECT * FROM
menu WHERE preference = most”)

order1.process

order2.process

06	NODEJS	-	PART	1	 27	

OMG	she’s	blocking	me.		
I	could	have	ordered	by	

now	!!	

The more customers you want to serve at
once, the more cashier lines you’ll need.

Cashier lines ~ threads in computing

Multi-threaded processing

Parallel code execution

Multiple CPUs run at a time, utilizing
shared resources (memory)

Blocking | I/O Model

06	NODEJS	-	PART	1	 28	

Non-Blocking | I/O Model

I’m	sRll	thinking,	but	
callback	to	me	when	I’m	

done.	
While	he’s	thinking,	I’ll	
order	the	salmon.	

•  Node loops through the customers
and polls them to determine which
ones are ready to order.

•  During a function’s queue, Node can

listen to another event.

•  When the other customer is finally
ready to order, he’ll issue a callback.

•  Asynchronous callbacks: “come back
to me when I’m finished”

•  function called at the completion
of a given task.	

06	NODEJS	-	PART	1	 29	

I’m	sRll	thinking,	but	
callback	to	me	when	I’m	

done.	
While	he’s	thinking,	I’ll	
order	the	salmon.	

Node code

console.log(‘Hello’);

setTimeout(function () {
 console.log(‘World’);
}, 5000);

console.log(‘Bye’);

// Outputs:
// Hello
// Bye
// World

Allows for high concurrency

Non-Blocking | I/O Model

06	NODEJS	-	PART	1	 30	

I’m	sRll	thinking,	but	
callback	to	me	when	I’m	

done.	
While	he’s	thinking,	I’ll	
order	the	salmon.	

Every function in Node is non-
blocking

Single-threaded

No parallel code execution

Single CPU

Non-Blocking | I/O Model

06	NODEJS	-	PART	1	 31	

	 Node is great for applications
with high concurrency

	 (Concurrency = number of
concurrent clients or users)

Non-Blocking | I/O Model

06	NODEJS	-	PART	1	 32	

	 nginx: non-blocking I/O

	 apache: blocking I/O

Non-Blocking | I/O Model

06	NODEJS	-	PART	1	 33	

Callbacks

	 In a synchronous program, you would write something along the lines of:

06	NODEJS	-	PART	1	 34	

This works just fine and is very typical in other development environments.

However, if fetchData takes a long time to load the data, then this causes the
whole program to 'block' - otherwise known as sitting still and waiting - until
it loads the data.

Node.js, being an asynchronous platform, doesn't wait around for things like
file I/O to finish - Node.js uses callbacks.

hcps://docs.nodejitsu.com/arRcles/geeng-started/control-flow/what-are-callbacks	

Callbacks

If Google’s V8 Engine is the heart of your Node.js application, then callbacks are
its veins.

They enable a balanced, non-blocking flow of asynchronous control across
modules and applications.

But for callbacks to work at scale you need a common, reliable protocol.

The “error-first” callback (also known as an “errorback”, “errback”, or “node-style callback”)
was introduced to solve this problem, and has since become the standard for Node.js
callbacks.

A callback is basically a function called at the completion of a given task; this
prevents any blocking, and allows other code to be run in the meantime.

06	NODEJS	-	PART	1	 35	
hcps://docs.nodejitsu.com/arRcles/geeng-started/control-flow/what-are-callbacks	&	hcp://thenodeway.io/posts/understanding-error-first-callbacks/	
	

Defining an Error-First Callback

There’s really only two rules for defining an error-first callback:

The first argument of the callback is reserved for an error object. If an error
occurred, it will be returned by the first err argument.

The second argument of the callback is reserved for any successful
response data. If no error occurred, err will be set to null and any successful
data will be returned in the second argument.

06	NODEJS	-	PART	1	 36	

Defining an Error-First Callback

fs.readFile() takes in a file path to read from, and calls your callback once it
has finished.

If all goes well, the file contents are returned in the data argument.

But if something goes wrong (the file doesn’t exist, permission is denied,
etc) the first err argument will be populated with an error object containing
information about the problem.

Its up to you, the callback creator, to properly handle this error. You can
throw an error if you want your entire application to shutdown. Or if you’re in
the middle of some asynchronous flow you can propagate that error out to
the next callback. The choice depends on both the situation and the desired
behavior.

06	NODEJS	-	PART	1	 37	

Defining an Error-First Callback

06	NODEJS	-	PART	1	 38	

Callbacks

The node.js way to deal with the previous example we saw would look a bit
more like this:

06	NODEJS	-	PART	1	 39	hcps://docs.nodejitsu.com/arRcles/geeng-started/control-flow/what-are-callbacks	

Callbacks

At first glance, it may look unnecessarily complicated, but callbacks are the
foundation of Node.js.

Callbacks give you an interface with which to say, "and when you're done
doing that, do all this." This allows you to have as many IO operations as
your OS can handle happening at the same time.

For example, in a web server with hundreds or thousands of pending
requests with multiple blocking queries, performing the blocking queries
asynchronously gives you the ability to be able to continue working and not
just sit still and wait until the blocking operations come back.

This is a major improvement.

06	NODEJS	-	PART	1	 40	hcps://docs.nodejitsu.com/arRcles/geeng-started/control-flow/what-are-callbacks	

Callbacks & Promises *

	 If you’ve done any serious work in JavaScript, you have probably had to face callbacks,
nested inside of callbacks, nested inside of callbacks. This is especially true of code written
in node.js, since every form of i/o, such as file reads, database reads and writes is
asynchronous, and most code needs more than a single i/o call. You may end up with
code that looks something like this:

06	NODEJS	-	PART	1	 41	

hcps://www.quora.com/Whats-the-difference-between-a-promise-and-a-callback-in-Javascript	

	 Pretty difficult to follow. And it
can get much worse. In our

current node.js codebase we
sometimes do as many as ten
sequential, asynchronous calls.
That would be a lot of nesting.

Thankfully, there’s a much better
way: promises.

Callbacks & Promises *

	 A promise is a proxy for a value not necessarily known at its creation time. With promises,
rather than an asynchronous call accepting a callback, it instead returns a promise. The
calling code can then wait until that promise is fulfilled before executing the next step. To do
so, the promise has a method named then, which accepts a function that will be invoked
when the promise has been fulfilled. As an example, the following is the above code
rewritten using promises:

06	NODEJS	-	PART	1	 42	

hcps://www.quora.com/Whats-the-difference-between-a-promise-and-a-callback-in-Javascript	

	 When then invokes the specified
function, that function receives

as a parameter the resolved
value of the promise. So, for

example, when getCollection is
called, a handle to the database

will be passed to it.

Node Modules

THE BUILDING BLOCKS OF NODE

06	NODEJS	-	PART	1	 43	

Node.js Ecosystem

	 Node.js relies heavily on modules.

	 Creating a module is easy, just put your JavaScript code in a separate js file
and include it in your code by using the keyword require, like:

Libraries in Node.js are called packages and they can be installed by typing

		
	

NPM downloads and installs modules, placing them into a node_modules
folder in your current folder.

 06	NODEJS	-	PART	1	 44	

var	modulex	=	require(‘./modulex’);	

npm	install	“package_name”;	//installs	in	current	folder	
//package	should	be	available	in	npm	registry	@	nmpjs.org	

NPM

➢  Common npm commands:

➢  npm init initialize a package.json file

➢  npm install <package name> -g install a package, if –g option is given
package will be installed globally, --save and --save-dev will add
package to your dependencies

➢  npm install install packages listed in package.json

➢  npm ls –g listed local packages (without –g) or global packages (with –g)

➢  npm update <package name> update a package

06	NODEJS	-	PART	1	 45	

Creating your own Node Modules

06	NODEJS	-	PART	1	 46	

donaRons.js	

app.js	

app.js	

Defines	what	
‘require’	returns	

The require search

●  Require searches for modules based on path

specified:

●  Just providing the module name will search in
node_modules folder

06	NODEJS	-	PART	1	 47	

var	myMod	=	require('./myModule');	//current	dir	
var	myMod	=	require('../myModule');	//parent	dir	
var	myMod	=	require('../modules/myModule');	

var	myMod	=	require('myModule');		

Express

A FRAMEWORK FOR NODE

06	NODEJS	-	PART	1	 48	

What is Express?

	 Express is a minimal and flexible framework for writing web applications in Node.js

◦  Built-in handling of HTTP requests

◦  You can tell it to 'route' requests for certain URLs to a function you specify

◦  Example: When /login is requested, call function handleLogin()

◦  These functions are given objects "

that represent the request and "
the response, not unlike Servlets

◦  Supports parameter handling, "
sessions, cookies, JSON parsing, "
and many other features

◦  API reference: http://expressjs.com/api.html

We’ll cover this (and more) in detail in the next Section (Part 2)

var	express	=	require('express');		
var	app	=	express();		
	
app.get('/',	function(req,	res)	{		
		res.send('hello	world');		
});		
	
module.exports	=	app;	

06	NODEJS	-	PART	1	 49	

Using NodeJS

	 NodeJS is just a JavaScript interpreter.

	 It comes with a package manager called npm

◦  Install packages like this: npm install <package_name>
◦  This will install it in the current folder.

◦  To install globally, do npm install –g <package_name>

	 To use Node as a webserver, you must write an application that responds to
web requests.

	 Node has a library (HTTP) for doing this, but it’s easier to use a framework,
like Express

	 To access a library, use the require() function

06	NODEJS	-	PART	1	 50	

Using Express

	 Express is just a package for Node

◦ Create a new web application with var app = express();
◦ Respond to requests like app.get('/user', function(req, res){
◦ Look at parameters through the req object

◦  req.params for query parameters

◦  req.body for post fields

◦  req.files for files

◦ Send responses through the res object

◦  res.send("Hi mom!")

◦ Start the application with

◦  app.listen(<port>)

06	NODEJS	-	PART	1	 51	

Great Resources

	 Official Tutorial – https://nodejs.org/documentation/tutorials/

	 Official API – https://nodejs.org/api/

	 Developer Guide – https://nodejs.org/documentation

	 Video Tutorials – http://nodetuts.com

	 Video Introduction – https://www.youtube.com/watch?v=FqMIyTH9wSg

	 YouTube Channel – https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg

	 Articles, explanations, tutorials – https://nodejs.org/community/

06	NODEJS	-	PART	1	 52	

Questions?

06	NODEJS	-	PART	1	 53	

