
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

COMPUTED PROPERTIES & WATCHERS

Vue.js
PART 7

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 7 3

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 7 4

Computed Properties &
Watchers
REACTING TO DATA CHANGE

VUEJS - PART 7 5

Introduction - Recap
In-template expressions are very convenient, but they are meant for simple operations. Putting
too much logic in your templates can make them bloated and hard to maintain. For example:

At this point, the template is no longer simple and declarative. You have to look at it for a second
before realizing that it displays message in reverse. The problem is made worse when you want
to include the reversed message in your template more than once.

That’s why for any complex logic, you should use a computed property.

VUEJS - PART 7 6

Introduction - Recap

VUEJS - PART 7 7

Result

Introduction - Recap

VUEJS - PART 7 8

While computed properties are more appropriate in most cases, there are times when a custom
watcher is necessary. That’s why Vue provides a more generic way to react to data changes
through the watch option. This is most useful when you want to perform asynchronous or
expensive operations in response to changing data.

As you can see in the code on the right, we're
storing counter in data, and by using the name of
the property as the function name, we're able to
watch it.

When we reference that counter in watch, we can
observe any change to that property.

Computed Properties in Depth
There are multiple ways in Vue to set values for the view. This includes directly binding data
value to the view, using simple expressions or using filters to do simple transformations on the
content.

In addition to this, we can use computed properties to calculate display values based on a value
or a set of values in the data model. These calculations will be cached and will only update when
needed (more on this later).

They allow us to have model-specific, complex values computed for the view. These values will
be bound to the dependency values and only update when required.

For example:

VUEJS - PART 7 9

Computed Properties in Depth
We could have an array of subject
results in the data model, like so :

VUEJS - PART 7 10

Computed Properties in Depth
Assume that we want to view the total for all subjects. We shouldn’t use filters or expressions
for this task because :
• Filters are used for simple data formatting and that are needed at multiple places in the

application.
• Expressions don’t allow the use of flow operation or other complex logic. They should be kept

simple.

Here’s where computed properties come in handy. We can add a computed value to the model
like this:

VUEJS - PART 7 11

Computed Properties in Depth

The totalMarks computed property calculates the total marks using the results array. It simply
loops through the values and returns the sub total.

VUEJS - PART 7 12

Computed Properties in Depth
We can then simply display the computed value in the view:

VUEJS - PART 7 13

Computed Properties vs Methods
Now, we could get the same result by using a method that outputs the total.

Instead of having the totalMarks function in the computed section, we can move it to
the methods and in the view we can change the template to execute the method, like so:

While this gives the same output, we are taking a performance hit. Using this syntax,
the totalMarks() method gets executed every time the page renders (ie: with every change).

VUEJS - PART 7 14

Computed Properties vs Methods
If instead we had a computed property, Vue remembers the values that the computed property
is dependent on (eg: In the previous example, that would be results). By doing so, Vue can
calculate the values only if the dependency changes. Otherwise, the previously cached values
will be returned.

Because of this, the function must be a pure function. It can’t have side-effects. The output must
only be dependent on the values passed into the function.

So imagine 3000 marks or even 30K, not just 3, as in this example, but in cases where you do not
want caching, use a method instead.

VUEJS - PART 7 15

Computed Setters
By default, the computed properties only present a getter. But, it’s also possible to have setters.

By having both getters and setters, we can bind the input value correctly to the model. If we set
the fullName in a method, the passed-in string will be split into the first and last name.

VUEJS - PART 7 16

Watchers in Depth
While computed properties may be sufficient in most cases, watchers provide an additional level
of control by allowing us to listen for changes to a property.

Watchers, as the name suggests, allows us to watch for changes in a model object. While it’s
possible to use watchers to get the same results as computed values, it’s often more complex
and expensive.

We can use watchers for more complex requirements, for example:
• Async operations
• Setting intermediate values
• Limiting the number of times an operation gets called (eg: Debounce an input event)

If we want to add a bit of functionality each time something changes, or respond to a particular
change, we could watch a property and apply some logic. This means that the name of the
watcher has to match what we’re trying to observe.

VUEJS - PART 7 17

Watchers in Depth
Vue grants us some deeper access into the reactivity system, which we can leverage as hooks to

observe anything that’s changing. This can be incredibly useful because, as application

developers, most of what we’re responsible for are things that change.

Watchers also allow us to write much more declarative code. You’re no longer tracking

everything yourself. Vue is already doing it under the hood, so you can also have access to

changes made to any properties it's tracking, in data, computed, or props, for example.

Watchers are incredibly good for executing logic that applies to something else when a change

on a property occurs. This isn't a hard & fast rule - you can absolutely use watchers for logic that

refers to the property itself, but it's a nice way of looking at how watchers are immediately

different from computed properties, where the change will be in reference to the property we

intend to use.

Here’s a very basic example :

VUEJS - PART 7 18

Watchers in Depth
As you can see in the code we’re
storing counter in data, and by
using the name of the property as
the function name, we're able to
watch it.

When we reference that
counter in watch we can observe
any change to that property.

VUEJS - PART 7 19

new Vue({
el: '#app',
data() {
return {
counter: 0

}
},
watch: {
counter() {
console.log('The counter has changed!')

}
}

})

Computed vs Watched Properties
When you have some data that needs to change based on some other data, it is tempting to
overuse watch - especially if you are coming from an AngularJS background.

However, it is often a better idea to use a computed property rather than an
imperative watch callback.

Consider the following :

VUEJS - PART 7 20

Computed vs Watched Properties

The above code is imperative and repetitive. Compare it with a computed property version :

VUEJS - PART 7 21

Computed vs Watched Properties

What do you think?

VUEJS - PART 7 22

When to use them…
WHEN TO USE METHODS

• To react to some event happening in the DOM
• To call a function when something happens in your component. You can call methods from

computed properties or watchers.

VUEJS - PART 7 23

When to use them…
WHEN TO USE COMPUTED PROPERTIES

• You need to compose new data from existing data sources
• You have a variable you use in your template that’s built from one or more data properties
• You want to reduce a complicated, nested property name to a more readable and easy to use

one, yet update it when the original property changes
• You need to reference a value from the template. In this case, creating a computed property

is the best thing because it’s cached.
• You need to listen to changes of more than one data property

VUEJS - PART 7 24

When to use them…
WHEN TO USE WATCHERS

• You want to listen when a data property changes, and perform some action
• You want to listen to a prop value change
• You only need to listen to one specific property (you can’t watch multiple properties at the

same time)
• You want to watch a data property until it reaches some specific value and then do something

VUEJS - PART 7 25

Case Study
LABS IN ACTION

VUEJS - PART 7 26

Demo Application

VUEJS - PART 7 27

https://donationweb-vue.firebaseapp.com

https://donationweb-vue.firebaseapp.com/

References
qhttps://vuejs.org

qhttps://alligator.io/vuejs/computed-properties/

qhttps://flaviocopes.com/vue-methods-watchers-computed-properties/

qhttps://css-tricks.com/methods-computed-and-watchers-in-vue-js/

VUEJS - PART 7 28

https://vuejs.org/
https://alligator.io/vuejs/computed-properties/
https://flaviocopes.com/vue-methods-watchers-computed-properties/
https://css-tricks.com/methods-computed-and-watchers-in-vue-js/

Questions?

VUEJS - PART 7 29

