
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

COMPONENTS

Vue.js
PART 2

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 2 3

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 2 4

Components
REUSABLE FUNCTIONALITY

VUEJS - PART 2 5

Introduction - Recap
Once again, as previously mentioned, the component system is another important concept in
Vue (possibly the most important concept), because it’s an abstraction that allows us to build
large-scale applications composed of small, self-contained, and often reusable components. If
we think about it, almost any type of application interface can be abstracted into a tree of
components:

VUEJS - PART 1 6

Introduction - Recap
Components can be included in a single file:

VUEJS - PART 1 7

Introduction - Recap
Or modularized into their own .vue files
(which is what we’ll do)

VUEJS - PART 1 8

Components in Depth
In Vue, components are reusable Vue instances and need to have at least 2
things:
• A name (obvious)
• A template (The rendered DOM that belongs to each component)

and because they are reusable Vue instances they also accept the same options
i.e.

• data
• computed
• watch
• methods and
• lifecycle hooks (mounted, unmounted) etc.

VUEJS - PART 2 9

Reusing Components
Here’s an example of a Vue Component (in-line) :

VUEJS - PART 2 10

Vue.component('button-counter', {
data: function () {

return {
count: 0

}
},
template: '<button v-on:click="count++">You clicked me {{ count }}

times.</button>'
})

Reusing Components
Vue Components can be reused as often as you like:

If you were to click on the buttons, each one will maintain its own, separate count. That’s
because each time you use a component, a new instance of it is created.

VUEJS - PART 2 11

Result in Browser

Reusing Components & data

When we defined the <button-counter> component, you may have noticed that data wasn’t
directly provided an object, like:

Instead, a component’s data option must be a function, so that each instance can maintain an
independent copy of the returned data object:

or

If Vue didn’t have this rule, clicking on one button would affect the data of all other instances,
VUEJS - PART 2 12

** dataMust Be a Function **

data() {
return {

count: 0
}

}

Single-File Components & Registration
In-line components can work very well for small to medium-sized projects, where JavaScript is
only used to enhance certain views. In more complex projects however, or when your frontend is
entirely driven by JavaScript, these disadvantages become apparent:

• Global definitions force unique names for every component
• String templates lack syntax highlighting and require ugly slashes for multiline HTML
• No CSS support means that while HTML and JavaScript are modularized into components, CSS is

conspicuously left out
• No build step restricts us to HTML and ES5 JavaScript, rather than preprocessors like Pug (formerly Jade)

and Babel

All of these are solved by single-file components with a .vue extension, made possible with
build tools such as Webpack or Browserify.

VUEJS - PART 2 13

Single-File Components & Registration
Here’s our AboutUs.vue, Now we
get:
• Complete syntax highlighting
• CommonJS modules
• Component-scoped CSS

All of this is possible thanks to the use
of Webpack. The Vue CLI makes this
very easy and is supported out of the
box. .vue files cannot be used without a
webpack setup, and as such, they are
not very suited to apps that just use Vue
on a page without being a full-blown
single-page app (SPA).

VUEJS - PART 2 14

Passing Data to Child Components (with Props)
We’ve looked at using (and reusing) components in a Vue app and the potential benefits that
offers to the developer but the problem is, components won’t really be useful unless you can
pass data to it, such as a ‘title’ and ‘content’ for example, of a specific object, (say a ‘post’) we
want to display. That’s where props come in.

Props are custom attributes you can register on a component. When a value is passed to a prop
attribute, it becomes a property on that component instance. To pass a ‘title’ to a ‘blog post’
component, we can include it in the list of props this component accepts, using a props option:

VUEJS - PART 2 15

Passing Data to Child Components (with Props)
A component can have as many props as you’d like and by default, any value can be passed to
any prop. In the template previous, you’ll see that we can access this value on the component
instance, just like with data.

Once a prop is registered, you can pass data to it as a custom attribute, like this:

VUEJS - PART 2 16

Passing Data to Child Components (with Props)
• Prop Casing (camelCase vs kebab-case)

HTML attribute names are case-insensitive, so browsers will interpret any uppercase characters
as lowercase. That means when you’re using in-DOM templates, camelCased prop names need
to use their kebab-cased (hyphen-delimited) equivalents:

Again, if you’re using string templates, this limitation does not apply.

VUEJS - PART 2 17

Passing Data to Child Components (with Props)
• Prop Types

So far, we’ve only seen props listed as an array of strings, for example:

Usually though, you’ll want every prop to be a specific type of value. In these cases, you can list
props as an object, where the properties’ names and values contain the prop names and types,
respectively:

This not only documents your component, but will also warn users in the browser’s JavaScript
console if they pass the wrong type.

VUEJS - PART 2 18

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 19

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 20

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 21

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 22

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 23

Passing Data to Child Components (with Props)
• Passing Static or Dynamic Props

So far we’ve just seen how to pass static props (Strings) but you can actually pass any type of
value to props:

VUEJS - PART 2 24

Passing Data to Child Components (with Props)
• One-Way Data Flow

All props form a one-way-down binding between the child property and the parent one: when

the parent property updates, it will flow down to the child, but not the other way around. This

prevents child components from accidentally mutating the parent’s state, which can make your

app’s data flow harder to understand.

In addition, every time the parent component is updated, all props in the child component will

be refreshed with the latest value. This means you should not attempt to mutate a prop inside

a child component. If you do, Vue will warn you in the console.

There are usually two cases where it’s tempting to mutate a prop:

VUEJS - PART 2 25

Passing Data to Child Components (with Props)
• One-Way Data Flow

VUEJS - PART 2 26

Passing Data to Child Components (with Props)
• One-Way Data Flow

VUEJS - PART 2 27

Component Content Distribution & Slots
Vue implements a content distribution API that’s modelled after the current Web Components
spec draft, using the <slot> element to serve as distribution outlets for content.

This allows you to compose components like this:

Then in the template for <navigation-link>, you might have:

When the component renders, the <slot> element will be replaced by “Your Profile”.

VUEJS - PART 2 28

https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md

Component Content Distribution & Slots
Slots can contain any template code, including HTML:

Or even other components:

If <navigation-link> did not contain a <slot> element, any content passed to it would simply be
discarded.

VUEJS - PART 2 29

Named Slots
There are times when it’s useful to have multiple slots. For example, in a hypothetical base-
layout component with the following template:

VUEJS - PART 2 30

Named Slots
For these cases, the <slot> element has a special attribute, name, which can be used to define
additional slots:

VUEJS - PART 2 31

Named Slots
To provide content to named slots, we can use the slot attribute on a <template> element in the
parent:

VUEJS - PART 2 32

Named Slots
Or, the slot attribute can also be used directly on a normal element:

There can still be one unnamed slot, which is the default slot that serves as a catch-all outlet for
any unmatched content. In both examples, the rendered HTML would be:

VUEJS - PART 2 33

Named Slots
In both previous examples, the rendered HTML would be:

VUEJS - PART 2 34

Scoped Slots
Sometimes you’ll want to provide a component with a reusable slot that can access data from
the child component. For example, a simple <todo-list> component may contain the following in
its template:

But in some parts of our app, we want the individual todo items to render something different
than just the todo.text. This is where scoped slots come in.

VUEJS - PART 2 35

Scoped Slots
To make the feature possible, all we have to do is wrap the todo item content in a <slot>
element, then pass the slot any data relevant to its context: in this case, the todo object:

VUEJS - PART 2 36

Scoped Slots
Now when we use the <todo-list> component, we can optionally define an
alternative <template> for todo items, but with access to data from the child via the slot-scope
attribute:

VUEJS - PART 2 37

Key Point about Slots
Think of slots as passing components as props to a child component. Similar to how we pass
strings, integers and objects, you're passing an entire sub-DOM tree which the child can use in
any place that it needs.

A few other places you can use slots:
◦ If you're building stuff on material design. For example, the "Cards" material design system.
◦ Modal windows and dialogs in general
◦ Things like Bootstrap Panels and Custom Content

A few more things about using slots:
◦ A child component can be used for styling/presentation and the business logic can be kept in the parent

element.
◦ If you don't pass anything to a slot, nothing is shown. This lets you re-use them quite nicely and only

pass in the slots that you want.

VUEJS - PART 2 38

http://getbootstrap.com/components/
http://getbootstrap.com/components/

Extra Reading & Info

https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-slots.html

VUEJS - PART 2 39

https://vuejs.org/v2/guide/components-props.html
https://vuejs.org/v2/guide/components-slots.html

Case Study
LABS IN ACTION

VUEJS - PART 2 40

Analysing our Case Study
So now that we’ve covered some more detail about Components and passing data to Child
Components via props and using slots, let’s take a closer look at how this is implemented in
DonationVue.

We’ll have a brief look at Donate.vue and DonationForm.vue with respect to how we
can include Custom Components and pass data from Parent to Child to allow for easier
maintainability and reusability.

We’ll also have a look at Donations.vue and how we make use of scoped slots to allow us to
edit and delete individual donations.

VUEJS - PART 2 41

Donate.vue

VUEJS - PART 2 42

Child Component

Component Registration

Data Binding (via props)

DonationForm.vue

VUEJS - PART 2 43

Component Template

Component Props

Component Data

DonationForm.vue

VUEJS - PART 2 44

Part of our Input Form

Populated from props (because
we want to change this locally)

Donations.vue

VUEJS - PART 2 45

Named, Scoped Slots

Component Props

Component methods

Donations.vue

VUEJS - PART 2 46

Named, Scoped Slots

Demo Application

VUEJS - PART 2 47

https://donationweb-vue.firebaseapp.com

https://donationweb-vue.firebaseapp.com/

References
qhttps://vuejs.org

qhttps://skyronic.com/blog/vue-slots-example

VUEJS - PART 2 48

https://vuejs.org/
https://skyronic.com/blog/vue-slots-example

Questions?

VUEJS - PART 2 49

