
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

DECLARATIVE RENDERING & REACTIVITY

Vue.js
PART 1

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 1 3

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 1 4

Declarative Rendering &
Reactivity
KEEPING TRACK OF CHANGES (DATA BINDING)

VUEJS - PART 1 5

Introduction - Recap
As previously mentioned, at the core of Vue.js is a system that enables us to declaratively render
data to the DOM using straightforward template syntax:

VUEJS - PART 1 6

This looks pretty similar to rendering a string template, but Vue
has done a lot of work under the hood. The data and the DOM
are now linked, and everything is now reactive.

“Mustache” syntax

Result in Browser

Introduction - Recap
In addition to text interpolation, we can also bind element attributes like this:

VUEJS - PART 1 7

Directive Result in Browser

Introduction - Recap
And two-way reactive data binding like this:

VUEJS - PART 1 8

Directive
Result in Browser

Reactivity in Depth
One of Vue’s most distinct features is the unobtrusive reactivity system.

Models are just plain JavaScript objects. When you modify them, the view
updates. It makes state management simple and intuitive, but it’s also important
to understand how it works to avoid some common gotchas.

Here, we are going to look at some of the lower-level details of Vue’s reactivity
system.

VUEJS - PART 1 9

How Changes are Tracked
When you pass a plain JavaScript object to a Vue instance as its data option, Vue will walk
through all of its properties and convert them to getter/setters using Object.defineProperty.
This is an ES5-only and un-shimmable feature, which is why Vue doesn’t support IE8 and below.

The getter/setters are invisible to the user, but under the hood they enable Vue to perform
dependency-tracking and change-notification when properties are accessed or modified. One
caveat is that browser consoles format getter/setters differently when converted data objects
are logged, so you may want to install vue-devtools for a more inspection-friendly interface.

Every component instance has a corresponding watcher instance, which records any properties
“touched” during the component’s render as dependencies. Later on when a dependency’s
setter is triggered, it notifies the watcher, which in turn causes the component to re-render.

VUEJS - PART 1 10

How Changes are Tracked

VUEJS - PART 1 11

Change Detection Caveats
Due to the limitations of modern JavaScript (and the abandonment of Object.observe),
Vue cannot detect property addition or deletion. Since Vue performs the getter/setter
conversion process during instance initialization, a property must be present in the data object
in order for Vue to convert it and make it reactive. For example:

Vue does not allow dynamically adding new root-level reactive properties to an already created
instance.

VUEJS - PART 1 12

Declaring Reactive Properties
Since Vue doesn’t allow dynamically adding root-level reactive properties, you have to initialize
Vue instances by declaring all root-level reactive data properties upfront, even with an empty
value:

If you don’t declare message in the data option, Vue will warn you that the render function is
trying to access a property that doesn’t exist.

VUEJS - PART 1 13

Declaring Reactive Properties
There are technical reasons behind this restriction;

It eliminates a class of edge cases in the dependency tracking system, and also makes Vue
instances play nicer with type checking systems.

But there is also an important consideration in terms of code maintainability: the data object is
like the schema for your component’s state.

Declaring all reactive properties upfront makes the component code easier to understand when
revisited later or read by another developer.

VUEJS - PART 1 14

Template Syntax
Vue.js uses an HTML-based template syntax that allows you to declaratively bind the rendered
DOM to the underlying Vue instance’s data.

All Vue.js templates are valid HTML that can be parsed by spec-compliant browsers and HTML
parsers.

Under the hood, Vue compiles the templates into Virtual DOM render functions. Combined with
the reactivity system,

Vue is able to intelligently figure out the minimal number of components to re-render and apply
the minimal amount of DOM manipulations when the app state changes.

VUEJS - PART 1 15

Case Study
LABS IN ACTION

VUEJS - PART 1 16

Analysing our Case Study
So now that we’ve covered some more detail about Declarative Rendering and Reactivity, let’s take
a closer look at how this is implemented in DonationVue.

We’ll first have a look at some of the more basic components (AboutUs.vue, ContactUs.vue
etc) and then some of the more advanced components (Donations.vue, Donate.vue) with
respect to primarily Declaring our Instance Variables and make use of Data Binding, but we’ll also
touch on Reusable Components and Event Handling (kinda!) (with a closer look in later sections).

VUEJS - PART 1 17

AboutUs.vue

VUEJS - PART 1 18

Component Template

Component Logic

Component Styling

Data Binding

Donations.vue

VUEJS - PART 1 19

Component Template

Component Logic

Component Styling

Donations.vue

VUEJS - PART 1 20

Data Binding

Vue-Table Component

Donations.vue

VUEJS - PART 1 21

Event Handling (of sorts),
Method Handling really, but this
is how we will implement it
eventually

Donate.vue

VUEJS - PART 1 22

Part of our Input Form

Demo Application

VUEJS - PART 1 23

https://donationweb-vue.firebaseapp.com

https://donationweb-vue.firebaseapp.com/

References
qhttps://vuejs.org

qDavid Ličen, davidlicen.com

VUEJS - PART 1 24

https://vuejs.org/
http://davidlicen.com

Questions?

VUEJS - PART 1 25

