
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

EXPRESS AND RESTFUL API’S

PART 2

Outline
1. Introduction – What Node is all about
2. Node Execution Model – Nodes Event-Driven, Non-Blocking I/O model
3. Asynchrony in Node – Events, Callbacks, Promises & Async/Awaits
4. Node Modules – The Building Blocks of Node
5. Express – A Framework for Node
6. REST – The Architectural Style of the Web
7. API Design – Exposing Application Functionality
8. REST in Express – Leveraging URLs, URI’s and HTTP

NODEJS - PART 2 3

Outline
1. Introduction – What Node is all about
2. Node Execution Model – Nodes Event-Driven, Non-Blocking I/O model
3. Asynchrony in Node – Events, Callbacks, Promises & Async/Awaits
4. Node Modules – The Building Blocks of Node

5. Express – A Framework for Node
6. REST – The Architectural Style of the Web
7. API Design – Exposing Application Functionality
8. REST in Express – Leveraging URLs, URI’s and HTTP

NODEJS - PART 2 4

Express
A FRAMEWORK FOR NODE

NODEJS - PART 2 5

RECAP - Using NodeJS
NodeJS is just a JavaScript interpreter.

It comes with a package manager called npm
◦ Install packages like this: npm install <package_name>
◦ This will install it in the current folder.
◦ To install globally, do npm install –g <package_name>

To use Node as a webserver, you must write an application that responds to
web requests.

Node has a library (HTTP) for doing this, but it’s much easier to use a
framework, like Express

NODEJS - PART 2 6

What is Express?
It’s a minimalist, “unopinionated” and extensible web framework built for
the Node.js ecosystem.
It enables you to create a web server that is more readable, flexible, and
maintainable than you would be able to create using only the Node HTTP
library, which can get verbose and complicated for even the most basic
web servers.
Express makes creating a web server much easier - As a matter of fact, it’s
difficult to even find examples of real-world web applications that use only
the Node HTTP library because you’d have to be sadistic to do it.

NODEJS - PART 2 7

https://nodejs.org/api/http.html

Express Basics
The classic “Hello World” example (to run [node server.js])

NODEJS - PART 2 8

Express Basics
And if you head over to http://localhost:3000, you get :

NODEJS - PART 2 9

http://localhost:3000/

Express Basics
Let’s have a look at the first two lines :

The first line requires the Express module that was installed via NPM,
and the second line sets up our Express application. With this application
(app), you can configure and add functionality to your server.

NODEJS - PART 2 10

Express Basics

The app.listen() function tells the server to start listening for
connections on a particular port, in this case port 3000.

This is why we went to localhost:3000 to look at our hello world example.

When the server is ready to listen for connections, the callback is called
and logs ’Express Intro running on localhost:3000’ in the terminal.

NODEJS - PART 2 11

Express Basics

This part, although small, is fairly dense because Express is able to give a
lot of functionality with very little code. app.get() creates a route
handler to listen for GET requests from a client. The first argument in this
function is the route path. In this case, we’re listening for GET requests on
localhost:3000/. If we wanted to listen for a POST request, then we
would use app.post() for a PUT request, app.put(), and so on for
any other HTTP method.

NODEJS - PART 2 12

Express Basics

The second argument is a callback function that takes a request object and
a response object. The request object contains information about the
request that came from the client (request headers, query parameters,
request body, etc.). The response object contains information that we want
to send as a response back to the client. The response object also has
functions that enable us to actually send a response.

Inside app.get(), the response.send('hello world'); function
sends a response with content in the body of the response. In this case, the
body contains the plain text hello world. Now we know how to set up a route!

NODEJS - PART 2 13

Express Highlights
Express is just a package for Node (but a very useful one!)
q Create a new web application with var app = express();
q Respond to requests like app.get('/user', function(req, res){
q Look at parameters through the req object
§ req.params for query parameters

§ req.body for post fields

§ req.files for files

q Send responses through the res object
§ res.send("Hi mom!")

q Start the application with
§ app.listen(<port>)

NODEJS - PART 2 14

Express & Beyond
q How to serve Static Assets
q How to serve JSON
q Middleware

We’ll cover this (and more) in detail in later Sections

API reference: http://expressjs.com/api.html

NODEJS - PART 2 15

http://expressjs.com/api.html

REST
THE ARCHITECTURAL STYLE OF THE WEB

NODEJS - PART 2 16

REST (REpresentational State Transfer)
The architectural style of the web

So what the %&*@#$ does that even mean?? J

REST is a set of design criteria and not the physical structure (architecture) of
the system

REST is not tied to the ‘Web’ i.e. doesn’t depend on the mechanics of HTTP

However, ‘Web’ applications are the most prevalent – hence RESTful
architectures run off of it

Coined by Roy Fielding in his PhD thesis

17NODEJS - PART 2

Understanding REST

Based on content from chapter #3 of:

RESTful Web Services (O’Reilly)

-Richardson & Ruby

18NODEJS - PART 2

Understanding REST – Resources
Anything that’s important enough to be referenced as a thing in itself

Something that can be stored on a computer and represented as a stream
of bits:
◦ A document (e.g. information about WIT)
◦ A Row in a DB (e.g. a ‘Donation’)
◦ Output of executing an algorithm (e.g. 100th Prime number or Google Search J)

19NODEJS - PART 2

URIs and Resources
URI is an ‘address’ of a resource

A resource must have at least one URI

No URI à Not a resource (i.e. it’s really not on the web, so to speak J)

URIs should be descriptive (human parseable) and have structure. For
Example:
◦ http://www.ex.com/software/releases/latest.tar.gz

◦ http://www.ex.com/map/roads/USA/CA/17_mile_drive

◦ http://www.ex.com/search/cs578

◦ http://www.ex.com/sales/2012/Q1

◦ http://www.ex.com/relationships/Alice;Bob

20NODEJS - PART 2

URIs and Resources (Cont’d)
Not so good URIs (everything as query parameters):
◦ http://www.ex.com?software=VisualParadigm&release=latest &filetype=tar&method=fetch

◦ http://www.ex.com?sessionId=12345678908765432123456787654323456786543234567
8876543&itemId=9AXFE5&method=addToCart

URIs need not have structure/predictability but are valuable (and easier) for the
(human) clients to navigate through the application

May have multiple URIs to refer to same resource – convenient but confusing

Each URI must refer to a unique resource – although they may point to the
‘same one’ at some point in time (Ex.: …/latest.tar.gz and …/v1.5.6.tar.gz)

21NODEJS - PART 2

Understanding REST - Addressability
An application is addressable if it exposes interesting aspects of its data set
as resources

An addressable application exposes a URI for every piece of information it
might conceivably serve (usually infinitely many J)

Most important from end-user perspective

Addressability allows one to bookmark URIs or embed them in
presentations/books etc. Ex.:
◦ google.com/search?q=CS577+USC

◦ Instead of
◦ Go to www.google.com

◦ Enter ‘CS577 USC’ (without quotes in search box)

◦ Click ‘Search’ or hit the ‘Enter key’

22NODEJS - PART 2

http://www.google.com/

REST Principle #1
THE KEY ABSTRACTION OF INFORMATION IS A RESOURCE, NAMED BY A

URI. ANY INFORMATION THAT CAN BE NAMED CAN BE A RESOURCE

Understanding REST - Statelessness
Every HTTP request happens in complete isolation
◦ Server NEVER relies on information from prior requests
◦ There is no specific ‘ordering’ of client requests (i.e. page 2 may be requested before

page 1)
◦ If the server restarts a client can resend the request and continue from where it left off

Possible states of a server are also resources and should be given their own
URIs!

24NODEJS - PART 2

REST Principle #2
ALL INTERACTIONS ARE CONTEXT-FREE: EACH INTERACTION CONTAINS ALL

OF THE INFORMATION NECESSARY TO UNDERSTAND THE REQUEST,
INDEPENDENT OF ANY OTHER REQUESTS THAT MAY HAVE PRECEDED IT.

Understanding REST - Representations
Resources are NOT data – they are an abstraction of how the
information/data is split up for presentation/consumption
The web server must respond to a request by sending a series of bytes in a
specific file format, in a specific language – i.e. a representation of the
resource
◦ Formats: XML/JSON, HTML, PDF, PPT, DOCX...
◦ Languages: English, Spanish, Hindi, Portuguese…

26NODEJS - PART 2

Which Representation to Request?
Style 1: Distinct URI for each representation:
◦ ex.com/press-release/2012-11.en (English)
◦ ex.com/press-release/2012.11.fr (French)
◦ …and so on

Style 2: Content Negotiation
◦ Expose Platonic form URI:

◦ ex.com/press-release/2012-11
◦ Client sets specific HTTP request headers to signal what representations it’s willing to

accept
◦ Accept: Acceptable file formats
◦ Accept-Language: Preferred language

27NODEJS - PART 2

REST Principle #3
THE REPRESENTATION OF A RESOURCE IS A SEQUENCE OF BYTES, PLUS

REPRESENTATION METADATA TO DESCRIBE THOSE BYTES. THE PARTICULAR
FORM OF THE REPRESENTATION CAN BE NEGOTIATED BETWEEN REST

COMPONENTS

Understanding REST – Uniform Interface
HTTP Provides 4 basic methods for CRUD (create, read, update, delete)
operations:
◦ GET: Retrieve representation of resource
◦ PUT: Update/modify existing resource (or create a new resource)
◦ POST: Create a new resource
◦ DELETE: Delete an existing resource

Another 2 less commonly used methods:
◦ HEAD: Fetch meta-data of representation only (i.e. a metadata representation)
◦ OPTIONS: Check which HTTP methods a particular resource supports

29NODEJS - PART 2

Be clear of the difference between PUT vs. POST

HTTP Request/Response
Method Request Entity-Body/Representation Response Entity-Body/Representation

GET (Usually) Empty Representation/entity-body
sent by client

Server returns representation of resource
in HTTP Response

DELETE (Usually) Empty Representation/entity-body
sent by client

Server may return entity-body with status
message or nothing at all

PUT Client’s proposed representation of
resource in entity-body

Server may respond back with status
message or with copy of representation or
nothing at all

POST Client’s proposed representation of
resource in entity-body

Server may respond back with status
message or with copy of representation or
nothing at all

30NODEJS - PART 2(entity-body == http term for content)

REST Principle #4
COMPONENTS PERFORM ONLY A SMALL SET OF WELL-DEFINED METHODS

ON A RESOURCE PRODUCING A REPRESENTATION TO CAPTURE THE
CURRENT OR INTENDED STATE OF THAT RESOURCE AND TRANSFER THAT

REPRESENTATION BETWEEN COMPONENTS.

THESE METHODS ARE GLOBAL TO THE SPECIFIC ARCHITECTURAL
INSTANTIATION OF REST; FOR INSTANCE, ALL RESOURCES EXPOSED VIA

HTTP ARE EXPECTED TO SUPPORT EACH OPERATION IDENTICALLY

Understanding REST – Safety & Idempotence
Idempotence: Executing the same operation multiple times is the
same as executing it once
◦ Deleting an already DELETE-ed resource is still deleted
◦ Updating an already updated resource with PUT has no effect

Safety: The request doesn’t change server state i.e. no side effects à
no changing state of resource
◦ Making 10 requests is same as making one or none at all

When correctly used GET and HEAD requests are safe and GET,
HEAD, PUT, DELETE are idempotent. POST is neither safe nor
idempotent

32NODEJS - PART 2

Safety and Idempotence
Why do they matter?
Lets a client make reliable HTTP requests over an unreliable connection
If no response then just reissue the request
Some common mistakes/misuses:
◦ GET https://some.api.com/item/delete
◦ (Overloaded)POST https://some.api.com/item

◦ Entity-body: Method=fetch
◦ Or setting different query parameters
◦ Basically using POST for everything J

33NODEJS - PART 2

REST Principle #5
IDEMPOTENT OPERATIONS AND REPRESENTATION METADATA ARE

ENCOURAGED IN SUPPORT OF CACHING AND REPRESENTATION REUSE.

Steps to a RESTful Architecture
Read the Requirements and turn them into resources J
1. Figure out the data set
2. Split the data set into resources

For each kind of resource:
3. Name resources with URIs
4. Expose a subset of uniform interface
5. Design representation(s) accepted from client (Form-data, JSON, XML to be sent to

server)
6. Design representation(s) served to client (file-format, language and/or (which) status

message to be sent)
7. Consider typical course of events: sunny-day scenarios
8. Consider alternative/error conditions: rainy-day scenarios

35NODEJS - PART 2

A Bit on HTTP Status/Response Codes
HTTP is built in with a set of status codes for various types of scenarios:
◦ 2xx Success (200 OK, 201 Created…)
◦ 3xx Redirection (303 See other)
◦ 4xx Client error (404 Not Found)
◦ 5xx Server error (500 Internal Server Errror)

Leverage existing status codes to handle sunny/rainy-day scenarios in your
application!

36NODEJS - PART 2

Some General Points to Note
Authentication/Authorization data should be sent with every request

Sessions are NOT RESTful (i.e. sessions = state)

Cookies, if used appropriately (for storing client state) are RESTful

100% RESTful architecture is not practical and not valuable either

You need to be unRESTful at times (Eg.: Login/Logout)
◦ These are actions and not a resource per se
◦ Usually POST requests sent to some URI for logging in/out
◦ Advantages: Gives login page, provides ability of “Forgot your password” type functionalities etc.
◦ Benefits of UnRESTful-ness outweigh adherence to style

Some server frameworks only support GET/POST forcing one to overload POST
requests for PUT/DELETE

37NODEJS - PART 2

Benefits of RESTful Design
Simpler and intuitive design – easier navigability

Server doesn’t have to worry about client timeout

Clients can easily survive a server restart (state controlled by client instead of server)

Easy distribution – since requests are independent – handled by different servers

Scalability: As simple as connecting more servers J

Stateless applications are easier to cache – applications can decide which response
to cache without worrying about ‘state’ of a previous request

Bookmark-able URIs/Application States

HTTP is stateless by default – developing applications with it gets above benefits
(unless you wish to break them on purpose J)

38NODEJS - PART 2

API Design
EXPOSING APPLICATION FUNCTIONALITY

NODEJS - PART 2 39

API Design
APIs expose functionality of an application or service

Designer must:
q Understanding enough of the important details of the application for

which an API is to be created,

q Model the functionality in an API that addresses all use cases that come
up in the real world, following the RESTful principles as closely as
possible.

NODEJS - PART 2 40

Nouns are good, verbs are bad
Keep your base URL simple and intuitive

2 base URLs per resource

The first URL is for a collection; the second is for a specific element in the
collection.

Example
◦ /contacts

◦ /contacts/1234

Keep verbs out of your URLs

NODEJS - PART 2 41

REST in Express
LEVERAGING URL’S, URI’S AND HTTP

NODEJS - PART 2 42

RESTful Frameworks
Almost all frameworks allow you to:

1. Specify URI Patterns for routing HTTP requests
2. Set allowable HTTP Methods on resources
3. Return various different representations (JSON, XML, HTML most popular)
4. Support content negotiation
5. Implement/follow the studied REST principles

Express is just ONE of the many frameworks…

43NODEJS - PART 2

List of REST Frameworks
Rails Framework for Ruby (Ruby on Rails)

Django (Python)

Jersey /JAX-RS (Java)

Restlet (Java)

Sinatra (Ruby)

Express.js (JavaScript/Node.js)

…and many others: View complete list at:
http://code.google.com/p/implementing-rest/wiki/RESTFrameworks

44NODEJS - PART 2

http://code.google.com/p/implementing-rest/wiki/RESTFrameworks

REST in Express
We can easily implement REST APIS using express routing functionality

Functionality usually implemented in api routing script

NODEJS - PART 2 45

Donationweb
BEHIND THE SCENES http://donationweb-server.herokuapp.com

http://donationweb-server.herokuapp.com/

Donation: Resource, URIs & Methods

{…} = variable value; changeable by user/application to refer to specific resource

47NODEJS - PART 2

Resource URI (structure) HTTP Request
List of Donations /donations GET

Get a Single Donation /donations/{id} GET

Upvote a Donation /donations/{id}/vote PUT

Delete a Donation /donations/{id} DELETE

Update a Donation /donations/{id} PUT

Add a Donation /donations/{id} POST

Total of Donation Votes /donations/votes GET

We’ll look at this Use Case as an example…

Creating the Model – Server Side

48NODEJS - PART 2

Creating the Routes (1) – Server Side

49NODEJS - PART 2

N.B. on ‘imports’

Creating the Routes (2) – Server Side

50NODEJS - PART 2

The Request object

51 NODEJS - PART 2

The req object represents the HTTP request - by convention, the
object is always referred to as 'req', Response is 'res'

Can use it to access the request query string, parameters, body,
HTTP headers.

app.get('/user/:id', function(req, res){
res.send('user ' + req.params.id);

});

Request Properties
req.param(name) Parameter 'name', if present

req.query Parsed query string (from URL)

req.body Parsed request body

req.files Uploaded files

req.cookies.foo Value of cookie 'foo', if present

req.get(field) Value of request header 'field'

req.ip Remote IP address

req.path URL path name

req.secure Is HTTPS being used?

52 NODEJS - PART 2

Response Object
The res object represents the HTTP response that an Express
app sends back when it gets an HTTP request.

app.get('/user/:id', function(req, res){
res.send('user ' + req.params.id);

});

NODEJS - PART 2 53

Response Properties
res.json([body])
◦ Sends a JSON response. This method is identical to res.send() with an

object or array as the parameter.

res.json({ user: 'tobi' });
res.status(500).json({ error: 'message' });

NODEJS - PART 2 54

Response Properties
res.send([body])
◦ Sends the HTTP response.
◦ The body parameter can be a String, an object, or an Array.
For example:

res.send({ some: 'json' });

res.send('<p>some html</p>');
res.status(404).send('Sorry, we cannot find that!');

res.status(500).send({ error: 'something blew up'
});

NODEJS - PART 2 55

Response Properties
res.format(object)
◦ Performs content-negotiation on the Accept HTTP header on the request

object
res.format({
'text/plain': function(){
res.send('hey');

},
'text/html': function(){
res.send('<p>hey</p>');

},
'application/json': function(){
res.send({ message: 'hey' });

},
'default': function() {
// log the request and respond with 406
res.status(406).send('Not Acceptable');

}
});

NODEJS - PART 2 56

Response Properties
res.status(code) Sets status 'code' (e.g., 200)
res.set(n,v) Sets header 'n' to value 'v'
res.cookie(n,v) Sets cookie 'n' to value 'v'
res.clearCookie(n) Clears cookie 'n'
res.redirect(url) Redirects browser to new URL
res.send(body) Sends response (HTML, JSON...)
res.type(t) Sets Content-type to t
res.sendfile(path) Sends a file

57 NODEJS - PART 2

Testing the Routes (1) – GET all

58NODEJS - PART 2

Testing the Routes (2) – GET one

59NODEJS - PART 2

Testing the Routes (3) – POST

60NODEJS - PART 2

Testing the Routes (4) – PUT

61NODEJS - PART 2

Testing the Routes (5) – DELETE

62NODEJS - PART 2

Serving static content

Your web app will probably have static files
◦ Examples: Images, CSS, client-side JavaScript, ...

Writing an app.get(...) route every time would be too cumbersome

Solution: express.static

63 NODEJS - PART 2

app.use(express.static(path.join(__dirname, 'public')));

Where content lives in the file
system on the server

Serving static content

64 NODEJS - PART 2

Serving static content

65 NODEJS - PART 2

Serving static content

66 NODEJS - PART 2

How to structure the app
Your web app will have several pieces:
◦ Main application logic
◦ 'Routes' for displaying specific pages (/login, /main, ...)
◦ Database model (get/set functions, queries, ...)
◦ Views (HTML or EJS files)

Suggestion: Keep them in different directories
◦ routes/ for the route functions
◦ model/ for the database functions
◦ views/ for the HTML pages and EJS templates
◦ Keep only app.js/package.json/config... in main directory

67 NODEJS - PART 2

Architectural Styles
Encountered With
REST
REST ISN’T ALONE J

Model-View-Controller (MVC)
Most commonly employed style with frameworks:
◦ Model: Classes responsible for talking to the DB and fetching/populating objects for the

application
◦ Controller: Acts as URI Router i.e. routes calls to specific resources and invokes actions

based on the corresponding HTTP Method
◦ View: Usually the resource itself that returns the content/representation as requested by

the client

May/may-not be true MVC but parts of application usually split as such –
leading to clean code organization/separation of concerns

69NODEJS - PART 2

Client-Side MVC
JS heavy pages lead to spaghetti code

Frameworks like Backbone.js, Ember.js implement MVC paradigm on web
page itself making code easier to manage/maintain
◦ Models: Data that is fetched/saved from/to the server
◦ Views: HTML elements that display the data and change if the data is updated
◦ Controller: Intercepts user-events and sends appropriate messages to model/views

JS Models communicate with server (controller) to update themselves

Client-side MVC becoming very popular and critical for ‘front-heavy’/smart-
client web-apps based on Ajax

70NODEJS - PART 2

Event-Based Architectures
Exclusively client-side:
◦ Required for communicating between various parts of the JS application/elements
◦ Based on the Observer pattern – an event bus is used for sending/receiving messages

across components

Exclusively server-side:
◦ For implementing asynchronous communications between different process (e.g.:

sending email after a particular action)
◦ Communicating with other processes on the network via a Message oriented

Middleware (MoM) (e.g.: RabbitMQ, WebSphereMQ etc.)
◦ Communicating with client-side apps – using Node.js or Pub/Sub (Publish/Subscribe)

web services like PubNub.com or Pusher.com

71NODEJS - PART 2

Conclusion
Just REST isn’t enough

100% REST isn’t the goal either

Various architectural styles work together in tandem for creating distributed
web-based systems

MVC on client-side is gaining high momentum (we’ll use this..)

Event-based communication exceedingly important for near-real-
time/asynchronous applications (reason for Node.js popularity)

You can learn the REST by reading a few books and
designing/implementing a few systems J

72NODEJS - PART 2

Great Resources
Official Tutorial – https://nodejs.org/documentation/tutorials/
Official API – https://nodejs.org/api/
Developer Guide – https://nodejs.org/documentation
Video Tutorials – http://nodetuts.com
Video Introduction – https://www.youtube.com/watch?v=FqMIyTH9wSg
YouTube Channel – https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg
Articles, explanations, tutorials – https://nodejs.org/community/
https://medium.com/@jaeger.rob/introduction-to-nodes-express-js-db5617047150

NODEJS - PART 2 73

https://nodejs.org/documentation/tutorials/
https://nodejs.org/api/
https://nodejs.org/documentation
http://nodetuts.com
https://www.youtube.com/watch?v=FqMIyTH9wSg
https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg
https://nodejs.org/community/
https://medium.com/@jaeger.rob/introduction-to-nodes-express-js-db5617047150

Questions?

NODEJS - PART 2 74

