
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

JavaScript
JAVASCRIPT FUNDAMENTALS

Agenda
qBackground & Introduction

qData Types, Objects & Arrays

qLooping & Iteration

qFunctions, Methods & Constructors

3JAVASCRIPT FUNDAMENTALS

What is JavaScript?

JAVASCRIPT FUNDAMENTALS 4

JavaScript is…
q a lightweight interpreted or JIT-compiled programming

language with first-class functions. (functions treated like variables)

q While it is most well-known as the scripting language for
Web pages, many non-browser environments also use it,
such as Node.js, Apache CouchDB and Adobe Acrobat.

q JavaScript is a prototype-based, multi-paradigm,
dynamic language, supporting object oriented,
imperative, and declarative (e.g. functional programming)
styles.

JAVASCRIPT FUNDAMENTALS 5

https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/Node.js
https://couchdb.apache.org/
http://www.adobe.com/devnet/acrobat/javascript.html
https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming

The JavaScript Engine
qAt present, JavaScript can execute not only in the browser, but also on the

server, or actually on any device where there exists a special program
called the JavaScript engine.

qThe browser has an embedded engine, sometimes it’s also called a
“JavaScript virtual machine”.

qDifferent engines have different “codenames”, for example:

qV8 – in Chrome and Opera.

qSpiderMonkey – in Firefox.

q…There are other codenames like “Trident”, “Chakra” for different versions of
IE, “ChakraCore” for Microsoft Edge, “Nitro” and “SquirrelFish” for Safari etc.

JAVASCRIPT FUNDAMENTALS 6

https://en.wikipedia.org/wiki/JavaScript_engine
https://en.wikipedia.org/wiki/V8_(JavaScript_engine)
https://en.wikipedia.org/wiki/SpiderMonkey

How Engines Work
qEngines are complicated. But the basics are easy.

1. The engine (embedded if it’s a browser) reads (“parses”) the script.

2. Then it converts (“compiles”) the script to the machine language.

3. And then the machine code runs, pretty fast.

qThe engine applies optimizations on every stage of the process. It even
watches the compiled script as it runs, analyzes the data that flows
through it and applies optimizations to the machine code based on that
knowledge. Basically, scripts are pretty fast.

JAVASCRIPT FUNDAMENTALS 7

JavaScript is NOT Java
qJavaScript was written was created in 10 days in May 1995 by Brendan

Eich.
qJavaScript was originally called Mocha and was renamed to LiveScript

before being renamed again to JavaScript.
qThe standard for JavaScript is ECMAScript. As of 2012, all modern

browsers fully support ECMAScript 5.1. Older browsers support at least
ECMAScript 3. On June 17, 2015, ECMA International published the sixth
major version of ECMAScript, which is officially called ECMAScript 2015,
and was initially referred to as ECMAScript 6 or ES6. Since then,
ECMAScript standards are on yearly release cycles.

qThe latest draft version is currently ECMAScript 2018.

8JAVASCRIPT FUNDAMENTALS

Why JavaScript?
(or maybe not?!)

JAVASCRIPT FUNDAMENTALS 9

Reason #1
qJavaScript is very easy to learn. No setup is required; it’s built right into the

web browser! Just start writing code and see the results immediately in
your browser.

qBUT - I pity would-be software engineers who are too intimidated and
lethargic to follow simple installation instructions for languages like Python,
Ruby, Smalltalk, Go and Elixir. They lack the kind of initiative, curiosity and
determination that is so necessary to becoming an IT professional.

qOnce you overcome the huge, overbearing obstacle of installing one of
these languages, you’ll find that the syntax is wonderfully easy and inviting.
They’ll make JavaScript look like the awkward stepchild that it is in the
world of engineering.

JAVASCRIPT FUNDAMENTALS 10

Reason #2
qJavaScript is used everywhere…web browser (Angular, React), server-side (Node),

mobile, desktop, games, Internet of Things, robotics, virtual reality, etc.

qBUT - JavaScript dominates in web development because you have no choice—it’s
the native language of the web browser. Outside of the web, is worse, for example, in
the mobile space, JavaScript has no hope of displacing Java (for Android) and
Objective-C/Swift (for iOS).

qOn the desktop, cannot compete with C++ and Java. In games, C++ and C# rule.
Internet of Things? We’re looking at C, Python, Java, even Perl! Robotics means
C/C++, Python, Java and Smalltalk. And so on.

qDo you see a pattern? In every case, solid programming languages win the
day. JavaScript is objectively a very flawed language. That it has managed to be
shoehorned into these different areas is a testament to the JavaScript community’s
creativity, but we have to face the fact that, in practice, JavaScript is not gaining
traction. JavaScript is used for web development – Period.

JAVASCRIPT FUNDAMENTALS 11

https://medium.com/javascript-non-grata/the-three-big-lies-about-javascript-e227cabe3beb

Reason #3
qNode is super popular. Proof: there are over 30,000 NPM packages

available!
qBUT - How many of these 30,000+ packages have significant usage?

Probably relatively few. The fact that so many NPM packages exist shows
the “gold rush” mentality that most contributors have. They hope to cash
in on the JavaScript hype, or at least make a name for themselves in the
open source community. Open source is another good example. Open
source has countless thousands of contributions, most of which never see
the light of day.

JAVASCRIPT FUNDAMENTALS 12

Reason #4
qThere are lots of high-paying jobs for JavaScript developers. What a great

way to start your IT career!

qBUT - It’s true, there are lots and lots of JavaScript job postings. And all of
them are related to front-end web development or Node. You won’t find
any postings for JavaScript programming in mobile, desktop, Internet of
Things, games, robotics, virtual reality, etc. If all you want to do is write
web apps, then JavaScript may be your ticket. But it’s hardly the path to a
healthy career in IT, where there are so many other exciting developments
going on, such as Artificial Intelligence, robotics, Big Data, Internet of
Things, cloud computing, scientific modelling and simulation, Virtual
Reality, etc., which use grown-up languages like Java, Python, C/C++, Go.

JAVASCRIPT FUNDAMENTALS 13

Reason #5
qJavaScript is an incredibly expressive and powerful language.

qBUT - Is JavaScript any more expressive than, say, Clojure, Scheme,
Erlang/Elixir, Haskell, C#, or even Smalltalk? Smalltalk has first-class
functions and closures, which means that it can do anything JavaScript
can do.

JAVASCRIPT FUNDAMENTALS 14

So there you have it: the five top reasons to use JavaScript.

Good luck with it. You’ll need it.

Some

Facts & Figures

(Early 2018)

JAVASCRIPT FUNDAMENTALS 15

JAVASCRIPT FUNDAMENTALS 16

JAVASCRIPT FUNDAMENTALS 17

JAVASCRIPT FUNDAMENTALS 18

JAVASCRIPT FUNDAMENTALS 19

The Basics

JAVASCRIPT FUNDAMENTALS 20

Objects & Primitives
q Everything is either a primitive or an object.

q Objects are ALWAYS passed by reference

q Primitives are ALWAYS passed by value

q Objects in JavaScript are mutable keyed collections/dictionaries.

q JavaScript uses prototypes for inheritance. There is no such thing as a class in
JavaScript. (allows you to add properties ‘on the fly’, amoungst other things)

https://docs.microsoft.com/en-us/scripting/javascript/advanced/prototypes-and-prototype-inheritance

21JAVASCRIPT FUNDAMENTALS

Primitive Types
q JavaScript has six primitive types:

q Boolean
q Null
q Undefined (yes, this is atype)
q Number (can be a number between −(253 − 1) and 253 − 1, NaN, -
Infinity, orInfinity).

q String (single or double quotes declares a string literal)
q Symbol (new in ECMAScript6)

JAVASCRIPT FUNDAMENTALS 22

Variables
q JavaScript is an untyped language.

q Variables are declared using the varkeyword (or most recently letor const)

Examples:

§ var name; - creates variable name of type undefined.

§ var name = ‘Bloggs’; - string literal
§ var age = 18; - declaring a number literal
§ var hasFriends = false; - declaring a boolean
§ var significantOther = null;

JAVASCRIPT FUNDAMENTALS 23

Control Statements
1 // if statement syntax is identical to C++/Java
2 if (condition) {
3 } else if (condition) {
4 } else {
5 }
6
7 // ternary syntax is just like C++/Java
8 var a = condition ? val_if_true : val_if_false;
9
10 for (initializer; condition; incrementor) {
11 // for loop syntax is identical
12 }
13
14 for (var prop in obj) {
15 obj[prop].doThing(); // prop is the key
16 // could be a number or a string
17 }

24JAVASCRIPT FUNDAMENTALS

Objects: Basics
qThe object - fundamental structure for representing complex data.

qA unit of composition for data (or STATE).

qObjects are a set of key-value pairs defining properties.
qKeys (property names) are identifiers and must be unique
qValues can be any type, including other objects (nesting).

q Literal syntax for defining an object:
{ <key1> : <value1>, <key2> : <value2>, ...}

qExample:

JAVASCRIPT FUNDAMENTALS 25

Objects: Basics
qTwo notations for accessing the value of a property:

1. Dot notation e.g me.first_name
2. Subscript notation e.g. me['first_name'] (Note quotes)

qSame notations for changing a property value.
me.first_name = 'Joe'
me[�last_name�] = 'Bloggs'

qSubscript notation allows the subscript be a variable reference.
var foo = 'last_name'
me[foo] = ……..

26JAVASCRIPT FUNDAMENTALS

Objects: Inheritance & the Prototype Chain
q Every JavaScript object is linked to a prototype. If a member is not found in an

object (i.e. if obj.foobar == undefined) then the prototype is searched. It
defines a sort of “default” set of values for the object.

q “Empty” objects start with Object.prototype defined as their prototype.
q You can set the prototype of an object to another object (or to undefined) by

calling myObj.prototype = otherObj;
q Since the prototype of an object is just another object, it too can have a prototype.

Hence the prototype chain. When you access a property of an object, the whole
prototype chain is searched for it.

q The prototype relationship is a dynamic relationship. If a property is added to the
prototype, it is automatically visible to all objects based on that prototype.

27JAVASCRIPT FUNDAMENTALS

Objects: Syntax
1 var myObj = { // this is an object literal
2 a: 3,
3 'b': 'JavaScript',
4 'is-awesome?': true,
5 doSomething: function () {
6 console.log(this.a); // 3
7 console.log(a); // error
8 }, // trailing commas are allowed
9 };
10 myObj.doSomething();
11 console.log(myObj.b, myObj['is-awesome?']);

Output:

1 3
2 error: a is undefined
3 JavaScript true

28JAVASCRIPT FUNDAMENTALS

Objects are dynamic
qProperties can be added and removed at any time – JS is dynamic.

29JAVASCRIPT FUNDAMENTALS

Objects: property
qA property value can be a variable reference.

30JAVASCRIPT FUNDAMENTALS

Objects: Arrays
qJavaScript arrays are basically vectors (and are also objects).

1 var arr = [1, 'a', {}, [], true];
2 arr[0] = 'not a number';
3 arr.push('this is basically a vector’); (also, pop, shift, unshift, join etc)
4 console.log(arr);

Output:

1 ['not a number', 'a', {}, [], true, 'this is basically a vector']

Note that the elements of an array do not have to be the same type.

31JAVASCRIPT FUNDAMENTALS

Array Data Structure
qDefinition: Arrays are an ordered list of values.
qAn object�s properties are not ordered.

qLiteral syntax: [<value1>,<value2>,...]

qIn JS, the array values may be of mixed type.
qAlthough mixed types may reflect bad design.

qUse an index number with the subscript notation to access individual
elements:

32JAVASCRIPT FUNDAMENTALS

Functions
q Functions are just objects with two special properties: a context (scope) and

the function code.
q Functions can be defined anywhere where an object can be defined and can be

stored in variables.
q Functions can access all arguments passed to a function via the arguments

variable.
q Functions can access the callee of a function (callee.func()) via the

thisvariable.
q Functions can also have named parameters.
q Functions always return a value. If no return is explicitly specified, the

function will return undefined.
33JAVASCRIPT FUNDAMENTALS

Functions
qCan be created using:
q A declaration (previous examples).
q An expression.
q A method (of a custom object).
q An anonymous unit.

qCan be called/invoked as:
q A function (previous examples).
q A method.
q A constructor.

34JAVASCRIPT FUNDAMENTALS

Functions: Callback
q Since JavaScript functions are objects, they can be passed just like other objects.

1 function doStuff(callback) {
2 // do a bunch of processing
3 var x = 3;
4 console.log('in doStuff');
5 callback(x);
6 }
7
8 doStuff(function(x) {
9 console.log(x * 3);
10 });

Output:

1 in doStuff
2 9

35JAVASCRIPT FUNDAMENTALS

Functions: New
q JavaScript functions canbe invoked with the new keyword, mimicking traditional class-based

languages:

1 function Thing(val) {
2 this.v = val;
3 }
4
5 var t = new Thing(12);
6 console.log(t.v); // prints 12

36JAVASCRIPT FUNDAMENTALS

Functions - Variable scopes

qEvery function creates a new variable scope.
qVariables declared inside the function are not accessible outside it.
qAll variables defined within the function are �hoisted� to the start of the function, as if all the
var statements were written first.
q You can use a variable inside a function before declaring it.

qGlobal scope – default scope for everything declared outside a function�s
scope.
qVariables in global scope are accessible inside functions.

37JAVASCRIPT FUNDAMENTALS

Function Declarations
qDefine a function using the syntax:

function name(...) { ... }
qFunction definitions are �hoisted� to the top of the current scope.
q You can use a function before it is defined – like function-scoped variables.

qCan also define functions inside other functions – same scoping rules as variables.

38

Collapsed for
convenience

JAVASCRIPT FUNDAMENTALS

Function Expressions
qDefines a function using the syntax:

var name = function(...) { ... }
qUnlike function declarations, there is no �hoisting�.
qYou can�t use the function before it is defined, because the variable referencing the function

has no value, yet.

qUseful for dynamically created functions.
qCalled in the same way as function declarations:

name(argument1, argument2, ...)

39JAVASCRIPT FUNDAMENTALS

Function Returns
qTypically, functions perform some logic AND return a result.

q[A function without a return statement will return �undefined�]
40JAVASCRIPT FUNDAMENTALS

Functions: (fat) arrow notation =>
q ‘Syntactic sugar’ (and ES5+ support) allows us to use the arrow notation to replace the
function keyword.

1 function doStuff(callback) {
2 // do a bunch of processing
3 var x = 3;
4 console.log('in doStuff now');
5 callback(x);
6 }
7
8 doStuff(x => console.log(x * 3));

Output:

1 in doStuff now
2 9

41JAVASCRIPT FUNDAMENTALS

Methods
q A property value of an object can be a function, termed a method.

q The same form of function definition as function expressions.

q Syntax: var obj = { …….
methodX : function(….) { …. },

…….. }

q Calling method syntax: obj.methodX(….)

q Methods of an object can be redefined or added at any time.
q JS is dynamic!!

q Methods must be defined before use.

q [A bit on Application design – The dominant design methodology encourages encapsulating
state (data) and behavior (methods) into units called classes. In JS, most custom objects are a
mix of state and methods, where the latter manipulates the state.]

42JAVASCRIPT FUNDAMENTALS

43

Methods

Use ‘this’ to reference the
enclosing object

JAVASCRIPT FUNDAMENTALS

Output:
1 Full worth = 25.5
2 { first: 'Joe', last: 'Bloggs', middle: 'Paul' }
3 { first: 'Joe', last: 'Bloggs', middle: 'Paul' }

Methods
qSyntax comparison:
qFunction:

computeTotal(person)
addMiddleName(person,�Paul')

qMethod:
person.computeTotal()
person.addMiddleName(me,�Paul�)

qThe special �this� variable.
qAlways references the enclosing

object.
qUsed by methods to access properties

of the enclosing object.

44JAVASCRIPT FUNDAMENTALS

Anonymous functions
qYou can define a function without giving it a name:

function(...) { …. }
qMainly used for �callbacks� - when a function/method needs another function

as an argument, which it calls.
qExample - The setTimeout system function.

q [Note: Any type of function (declaration, expression, method) can be used as a callback,
not just anonymous functions.]

45JAVASCRIPT FUNDAMENTALS

Output:

1 Immediately
2 After 1000 miliseconds

Anonymous functions
qA more elegant way of processing an array.
qObjective: Display every number > 20 from the array.

qThe anonymous function is called by forEach(), once for each entry in the array. The function’s
parameter (entry) will be set to the current array entry being processed.

46JAVASCRIPT FUNDAMENTALS

Constructors
qThe object literal syntax is not efficient for creating multiple objects of a

common �type�.
qEfficiency = Amount of source code.

47

var customer1 = { name �Joe Bloggs�,
address : �1 Main St�,
finances : {. },
computeTotal : function () { },
adjustFinance : function (change) { . . . }

}
var customer2 = { name �Pat Smith�,

address : �2 High St�,
finances : {. },
computeTotal : function () { },
adjustFinance : function (change) { . . . }

}
var customer3 =

Constructors solve
this problem

JAVASCRIPT FUNDAMENTALS

Constructors.
qConstructor - Function for creating (constructing) an object of a custom

type.
qCustom type examples: Customer, Product, Order, Student, Module, Lecture.

• Idea borrowed from class-based languages, e.g. Java.
q No classes in Javascript.

qConvention: Capitalize function name to distinguish it from ordinary
functions.
function Foo(. . .) { ... }

qConstructor call must be preceded by the new operator.
var a_foo = new Foo(. . .)

48JAVASCRIPT FUNDAMENTALS

Constructors
qWhat happens when a constructor is called?

1. A new (empty) object is created, ie. { } .
2. The this variable is set to the new object.
3. The function is executed.
4. The default return value is the object referenced by this.

49

function Customer (name_in,address_in,finances_in) {
this.name = name_in
this.address = address_in
this.finances = finances_in
this.computeTotal = function () { }
this.changeFinannce = function (change) { }

}
var customer1 = new Customer ('Joe Bloggs','I Main St.', {. . . })
var customer1 = new Customer (’Pat Smith',’2 High St.', {. . . })
console.log(customer1.name) // Joe Bloggs
var total = customer1.computeTotal() JAVASCRIPT FUNDAMENTALS

Scope
q There are two scopes in JavaScript: global and function.
q Variables declared outside of a function are automatically in the global scope.
q Variables declared within a function without the var keyword are also in the global

scope.

1 var a = 2;
2 (function() {
3 b = 3
4 var c = 5;
5 })(); // this creates and invokes the function immediately
6
7 console.log(a); // logs 2
8 console.log(b); // logs 3
9 console.log(c); // error since c is undefined in global scope

50JAVASCRIPT FUNDAMENTALS

Private Variables
q You can simulate private variables like so:

1 var Dog = function(name) {
2 var gender = 'male';
3 this.name = name;
4 this.isBoy = function () {
5 return gender == 'male';
6 };
7 };
8

9 var myDog = new Dog('Sebastian');
10 console.log(myDog.gender); // logs undefined
11 console.log(myDog.name); // logs 'Sebastian'
12 console.log(myDog.isBoy()); // logs true

51JAVASCRIPT FUNDAMENTALS

Pitfalls: Variable Hoisting
q Variables are hoisted to the top of the function they are declared in.

Thus, the following is entirely valid.

1 function scopeEx() {
2 b = 5;
3 console.log(b); // logs 5
4 var b = 3
5 console.log(b); // logs 3
6 }

qThis is confusing. Just declare your variables before you use them
(and that’s what let and const do now!)

52JAVASCRIPT FUNDAMENTALS

Pitfalls: Truthy, Falsy and == vs ===
q JavaScript has the notion of being truthy and falsy.

q The following values are always falsy: false, 0, "", null, undefined,
NaN.

q Do not expect all falsy values to be equal to each other (false == null is
false).

q JavaScript has two equality operators:
q == compares without checking variable type. This will cast then compare.
q === compares and checks variable type.

53JAVASCRIPT FUNDAMENTALS

DOM Manipulation
The Document Object Model is an API used by JavaScript to interact with the elements
of an HTML document.
jQuery is great for simple DOM manipulation.

1 <div id="cool">Cool</div>
2 <div class="myCls">jQuery Demo</div>

1 var coolDiv = document.getElementById('cool'); // pure JS
2 coolDiv.style.background = 'blue';
3

4 var coolDiv = $('#cool'); // jQuery
5 coolDiv.css('background-color', 'blue');

jQuery does a ton of other useful things as well, but that’s what the docs are for.

54JAVASCRIPT FUNDAMENTALS

Canvas Manipulation
q Many JS games use lots of HTML and CSS to draw the game, with some JS and

DOM/JQuery-stuff for the logic. However, you can also draw the game directly using a
Canvas. All you need then is a few lines of HTML and the rest can happen in your script.
You can even create 3D stuff with WebGL or a 3rd party library like Three.js.

1 var c = document.getElementById("myCanvas");
2 var ctx = c.getContext("2d");
3 ctx.moveTo(0,0);
4 ctx.lineTo(200,100);
5 ctx.stroke();

JAVASCRIPT FUNDAMENTALS 55

Additional Resources
A lot of this presentation was based off of JavaScript: The Good Parts by Douglas
Crockford. This is an essential read for anyone interested in learning JavaScript for anything
more than writing a few simplescripts.

MDN is the best resource for JavaScript documentation
(https://developer.mozilla.org/en-US/).

JSHint (http://jshint.com/about/) is a tool which checks JavaScript syntax and helps
prevent bugs in your code. JSHint has plugins for most IDEs and text editors. Here’s a SO
article on the Vim plugin:

http://stackoverflow.com/questions/473478/vim-jslint/5893447

56JAVASCRIPT FUNDAMENTALS

https://developer.mozilla.org/en-US/
http://jshint.com/about/
http://stackoverflow.com/questions/473478/vim-jslint/5893447

References
q https://javascript.info

q https://gist.github.com/not-an-aardvark/cb9dbfba750e9a28cb78447491a1d079

q https://medium.com/javascript-non-grata/the-five-top-reasons-to-use-javascript-bd0c0917cf49

q https://stackify.com/popular-programming-languages-2018/

JAVASCRIPT FUNDAMENTALS 57

Sumner Evans and Sam Sartor

November 10,2016

https://medium.com/javascript-non-grata/the-five-top-reasons-to-use-javascript-bd0c0917cf49

Questions?

JAVASCRIPT FUNDAMENTALS 58

