
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

A type-safe HTTP client for Android & Java

Android & Retrofit

Android & Retrofit 3

Agenda & Goals

q Investigate the use of Retrofit in App Development

qBe aware of the different Retrofit Annotations and Classes
and how, when and where to use them

qRevisit Java interfaces

qUnderstand how to integrate Retrofit into an Android App

qRefactor our CoffeeMate Case Study

Android & Retrofit 4

What is it?
qRetrofit is a Java Library that turns your REST API into a

Java interface
qSimplifies HTTP communication by turning remote APIs

into declarative, type-safe interfaces
qDeveloped by Square (Jake Wharton)
qRetrofit is one of the most popular HTTP Client Library

for Android as a result of its simplicity and its great
performance compared to the others (next slide)

qRetrofit makes use of OkHttp (from the same developer)
to handle network requests.

5Android & Retrofit

Retrofit Performance Analysis

6Android & Retrofit

http://instructure.github.io/blog/2013/12/09/volley-vs-retrofit/

Why Use it?
qDeveloping your own type-safe HTTP library to interface

with a REST API can be a real pain: you have to handle
many functionalities such as making connections,
caching, retrying failed requests, threading, response
parsing, error handling, and more.

qRetrofit, on the other hand, is very well planned,
documented, and tested—a battle-tested library that will
save you a lot of precious time and headaches.

7Android & Retrofit

The Basics
q Again, Retrofit2 is a flexible

library that uses annotated
interfaces to create REST
calls. To get started, let’s
look at our CoffeeMate
example that makes a GET
request for Coffees.

q Here’s the Coffee class we’re
using:

q Much simpler if field names
matches server model (but
doesn’t have to, see later)

8Android & Retrofit

The Service interface *
q Once we’ve defined the class, we can make a service interface

to handle our API. A GET request to load all Coffees could look
something like this:

q Note that the @GET annotation takes the endpoint we wish to
hit. As you can see, an implementation of this interface will
return a Call object containing a list of Coffees.

9Android & Retrofit

Call class

10Android & Retrofit

Beyond GET – other types of Calls
q Retrofit2 is not limited

to GET requests. You
may specify other REST
methods using the
appropriate annotations
(such as @POST, @PUT
and @DELETE).

q Here’s another version
of our CoffeeService
interface (with full CRUD
support)

11Android & Retrofit

Calling the API
q So how do we use this interface to make requests to the API?
q Use Retrofit2 to create an implementation of the above interface, and

then call the desired method.
q Retrofit2 supports a number of converters used to map Java objects

to the data format your server expects (JSON, XML, etc). we’ll be using
the Gson converter.

12Android & Retrofit

Aside - CoffeeMate Android Client

q Use CoffeeService for
q Adding / Updating / Deleting a Coffee

q Listing All Coffees

q Finding a single Coffee

{ method: 'GET', path: ‘/coffees/{token}', config: CoffeeApi.findAll },
{ method: 'GET', path: '/coffees/{token}/{id}', config: CoffeeApi.findById },
{ method: 'POST', path: '/coffees/{token} ', config: CoffeeApi.addCoffee },
{ method: 'PUT', path: '/coffees/{token}/{id}', config: CoffeeApi.updateCoffee },
{ method: 'DELETE', path: /coffees/{token}/{id}', config: CoffeeApi.deleteCoffee }

q coffeemateweb api endpoints

Android & Retrofit 13

Android Networking
(Using Retrofit)

in
CoffeeMate.5.1

Android & Retrofit 14

Steps to integrate Retrofit into your App
1. Set up your Project Dependencies & Permissions
2. Create Interface for API and declare methods for each

REST Call, specifying method type using Annotations -
@GET, @POST, @PUT, etc. For parameters use - @Path,
@Query, @Body

3. Use Retrofit to build the service client
4. Make the REST Calls as necessary using the relevant

Callback mechanism

15Android & Retrofit

qAdd the required dependencies to your build.gradle

qAnd the necessary permissions to your manifest –
BEFORE/OUTSIDE the application tag

1. Project Dependencies & Permissions *

16Android & Retrofit

Android & Retrofit 17

2. Create interface for API

3. Build Service Client - CoffeeMateApp *

q Implement the necessary interface & variables

18Android & Retrofit

Note the serviceURL

Our
CoffeeService

instance

3. Build Service Client - CoffeeMateApp *

qCreate the proxy
service
‘coffeeService’,
with the appropriate
Gson parsers

Android & Retrofit 19

3. Build Service Client - CoffeeMateApp *

Android & Retrofit 20

Gson for converting
our JSON

OkHttpClient for
communication timeouts

(optional)

Retrofit.Builder to
create an instance of our

interface

4. Calling the API - CoffeeFragment *

q Implement the necessary interface & variables

21Android & Retrofit

the call object, for
making the requests

Note the
Callback
interface

4. CoffeeFragment – onResume() *

22Android & Retrofit

enqueue() allows
for asynchronous

callback to our service

4. CoffeeFragment – onResponse() *
qTriggered on a successful call to the API
qTakes 2 parameters

q The Call object
q The expected Response object

qConverted JSON result stored in response.body()

23Android & Retrofit

4. CoffeeFragment – onFailure() *

24Android & Retrofit

qTriggered on an unsuccessful call to the API

qTakes 2 parameters
q The Call object

q A Throwable object containing error info

qProbably should inform user of what’s happened

‘Add’ UseCase *

25Android & Retrofit

Callback and Call
references

‘Add’ UseCase *

26Android & Retrofit

Creating the Call and
triggering the Callback

CoffeeMateWeb + Mobile

27Android & Retrofit

Anonymous Callbacks *

28Android & Retrofit

Anonymous Callback
allows for multiple calls

in same class

‘Delete’ UseCase *

29Android & Retrofit

Anonymous Callbacks
multiple calls here

‘Delete’ UseCase *

30Android & Retrofit

Anonymous Callback

Standard Callback

Bridging the Gap Between Your Code & Your API

qVariable Names
q In the previous examples, we assumed that there was an exact mapping of

instance variable names between the Coffee class and the server. This will often
not be the case, especially if your server uses a different spelling convention
than your Android app.

q For example, if you use a Rails server, you will probably be returning data using
snake_case, while your Java probably uses camelCase. If we add a
dateCreated to the Coffee class, we may be receiving it from the server as
date_created.

q To create this mapping, use the @SerializedName annotation on the instance
variable. For example:

31Android & Retrofit

@SerializedName("date_created")
private Date dateCreated;

qYou can also create your models automatically from your
JSON response data by leveraging a very useful tool:
jsonschema2pojo - http://www.jsonschema2pojo.org

qGrab your JSON string, visit the above link and paste it in, like
so

32Android & Retrofit

Bridging the Gap Between Your Code & Your API

http://www.jsonschema2pojo.org

33Android & Retrofit

Bridging the Gap
Between Your
Code & Your API

Your JSON goes here

34Android & Retrofit

Bridging the Gap
Between Your
Code & Your API

Your annotated class

Bridging the Gap Between Your Code & Your API

qDate Formats
q Another potential disconnect between the app and the server is the way they

represent date objects.

q For instance, Rails may send a date to your app in the format "yyyy-MM-
dd'T'HH:mm:ss" which Gson will not be able to convert to a Java Date. We
have to explicitly tell the converter how to perform this conversion. In this case,
we can alter the Gson builder call to look like this:

35Android & Retrofit

Gson gson = new GsonBuilder()
.setDateFormat("yyyy-MM-dd'T'HH:mm:ss")
.create();

Additional Info - Headers
q If you wish to add headers to your calls, you can

annotate your method or arguments to indicate this.
qFor instance, if we wanted to add a content type and a

specific user’s authentication token, we could do
something like this:

36Android & Retrofit

@POST("/coffees")
@Headers({"Content-Type: application/json"})
Call<Coffee> createCoffee(@Body Coffee coffee,

@Header("Authorization") String token);

Full List of Retrofit Annotations
q@POST
q@PUT
q@GET
q@DELETE
q@Header
q@PATCH

37Android & Retrofit

q@Path
q@Query
q@Body

References

q http://square.github.io/retrofit/

q https://spin.atomicobject.com/2017/01/03/android-rest-calls-retrofit2/

q https://code.tutsplus.com/tutorials/getting-started-with-retrofit-2--
cms-27792

38Android & Retrofit

https://spin.atomicobject.com/2017/01/03/android-rest-calls-retrofit2/
https://spin.atomicobject.com/2017/01/03/android-rest-calls-retrofit2/
https://code.tutsplus.com/tutorials/getting-started-with-retrofit-2--cms-27792

Questions?

Android & Retrofit 39

