
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Multithreading "
& Networking

Android Multithreading & Networking
 2!

Agenda & Goals

❑ Understand what multithreading is and the need for it in

Android development

❑ Be aware of the different approaches available in Android

multithreading

❑ Be aware how to implement some of these approaches

(including AsyncTasks) in an Android app.

❑ Understand JSON & Googles Gson

❑ Investigate the use of Volley in Android Networking

❑ Revisit our Donation Case Study

Android Multithreading & Networking
 3!

Background Processes in General

❑ One of the key features of Android (and iPhone) is the ability

to run things in the background

■  Threads

⬥ Run something in the background while user interacts
with UI

■  Services

⬥ Regularly or continuously perform actions that don’t

require a UI

Android Multithreading & Networking
 4!

Threads

❑ Recall that Android ensures responsive apps by

enforcing a 5 second limit on Activities

❑ Sometimes we need to do things that take longer than 5

seconds, or that can be done while the user does
something else

❑ Activities, Services, and Broadcast Receivers run on the
main application thread

❑ But we can start background/child threads to do other
things for us

Android Multithreading & Networking
 5!

Threads

h"p://developer.android.com/reference/java/lang/Thread.html	

q  A Thread is a concurrent unit of execution.

q  Each thread has its own call stack. The call stack is used on
method calling, parameter passing, and storage for the called
method’s local variables.

q  Each virtual machine instance has at least one main thread."

q  Threads in the same VM interact and synchronize by the use

of shared objects and monitors associated with these objects.

Android Multithreading & Networking
 6!

Process	1	(Virtual	Machine	1)	

Common	memory	
resources	

Thread-1	
Thread-2	

Main	
thread	

Common	memory	
resources	

main	
thread	

Process	2	(Virtual	Machine	2)	

Threads

Android Multithreading & Networking
 7!

Android Thread Constraints

❑ Child threads cannot access UI elements (views); these

elements must (and can only) be accessed through the
main thread

❑ So what do you do?

■  You give results to the main thread and let it use the

results

Android Multithreading & Networking
 8!

Advantages of Multithreading

❑ Threads share the process' resources but are able to execute

independently.

❑ Applications responsibilities can be separated

■  main thread runs UI, and

■  slow tasks are sent to background threads.

❑ Threading provides an useful abstraction of concurrent
execution.

❑ A multithreaded program operates faster on computer
systems that have multiple CPUs. "
(Java 8 supports multi-core multi-threading)

Android Multithreading & Networking
 9!

!
!

q  Code tends to be more complex

q  Need to detect, avoid, resolve
deadlocks

A1	
!

WaiBng	for	A2	
to	finish	

A2	
!

WaiBng	for	A1	
to	finish	

A2	
A3	

A1	

Disadvantages

Android Multithreading & Networking
 10!

!

Problem: 	An	application	may	involve	a	Bme-consuming	operaBon.	
Goal: 	We	want	the	UI	to	be	responsive	to	the	user	in	spite	of	heavy	load.	

Solu<on: 	Android	offers	two	ways	for	dealing	with	this	scenario:	
!
!

1.  Do	expensive	operaBons	in	a	background	service,	using	
no#fica#ons	to	inform	users	about	next	step	

!
!

2.  Do	the	slow	work	in	a	background	thread.	
!
!
Using	Threads:		InteracBon	between	Android	threads	is	accomplished	using	

(a)  a	main	thread	Handler	object	and	
(b)  posBng	Runnable	objects	to	the	main	view.	

Android‘s Approach to Slow Activities

Android Multithreading & Networking
 11!

There	are	basically	two	main	ways	of	having	a	Thread	execute	application	code.	
!
!

q  Create	a	new	class	that	extends	Thread	and	override	its	
run()	method.	

MyThread	t	=	new	MyThread();	
t.start();	

!
!

q  Create	a	new	Thread	instance	passing	to	it	a	Runnable	object.	
!

Runnable	myRunnable1	=	new	
MyRunnableClass();	Thread	t1	=	new	
Thread(myRunnable1);	t1.start();	

!
!

In	both	cases,	the	start()	method	must	be	called	to	actually	execute	the	new	
Thread.	

Thread Execution – Example

Android Multithreading & Networking
 12!

Multithreading – Our Splash Screen

2 secs
later

Android Multithreading & Networking
 13!

q  The AsyncTask class allows to perform background operations and
publish results on the UI thread without having to manipulate threads and/
or handlers.

q  An asynchronous task is defined by a computation that runs on a
background thread and whose result is published on the UI thread.

q  An asynchronous task is defined by

3	Generic	Types	 4	Main	States	 1	Auxiliary	Method	

Params,	
Progress,	
Result	

onPreExecute,	
doInBackground,	
onProgressUpdate	
onPostExecute.	

publishProgress	

Using the AsyncTask class

h"p://developer.android.com/reference/android/os/AsyncTask.html	

Android Multithreading & Networking
 14!

q Not	all	types	are	always	used	by	an	asynchronous	task.		To	mark	a	
type	as	unused,	simply	use	the	type	Void	

Note:	
Syntax	“String	...”	 indicates	(Varargs)	array	of	String	values,		similar	to	“String[]”	

AsyncTask <Params, Progress, Result>

AsyncTask's	generic	types	

Params: 	the	type	of	the	input	parameters	sent	to	the	task	at	execuBon.	

Progress:		the	type	of	the	progress	units	published	during	the	background	computaBon.	

Result: 	the	type	of	the	result	of	the	background	computaBon.	

Using the AsyncTask class

Android Multithreading & Networking
 15!

Using the AsyncTask class

❑ onPreExecute

■  is invoked before the execution.

❑  onPostExecute

■  is invoked after the execution.

❑ doInBackground

■  the main operation. Write your heavy operation here.

❑ onProgressUpdate

■  Indication to the user on the current progress. It is
invoked every time publishProgress() is called.

Android Multithreading & Networking
 16!

Using the
AsyncTask class

Android Multithreading & Networking
 17!

1!

2!

3!

4!

AsyncTask's	methods	
onPreExecute(),		invoked	on	the	UI	thread	immediately	after	the	task	is	executed.		This	step	is	normally	used	to	
setup	the	task,	for	instance	by	showing	a	progress	bar	in	the	user	interface.	

doInBackground(Params...),		invoked	on	the	background	thread	immediately	after	onPreExecute()	finishes	executing.	
This	step	is	used	to	perform	background	computation	that	can	take	a	long	time.	The	parameters	of	the	asynchronous	
task	are	passed	to	this	step.	The	result	of	the	computation	must	be	returned	by	this	step	and	will	be	passed	back	to	
the	last	step.	This	step	can	also	use	publishProgress(Progress...)	to	publish	one	or	more	units	of	progress.	These	
values	are	published	on	the	UI	thread,	in	the	onProgressUpdate(Progress...)	step.	

onProgressUpdate(Progress...),		invoked	on	the	UI	thread	after	a	call	to	publishProgress(Progress...).		The	timing	
of	the	execution	is	undefined.	This	method	is	used		to	display	any	form	of	progress	in	the	user	interface	while	the	
background	computation	is	still	executing.	For	instance,	it	can	be	used	to	animate	a	progress	bar	or	show	logs	in	a	
text	field.	

onPostExecute(Result),		invoked	on	the	UI	thread	after	the	background	computation	finishes.	The	result	of	the	
background	computation	is	passed	to	this	step	as	a	parameter.	

Using the AsyncTask class

Android Multithreading & Networking
 18!

The Asynchronous Calls

Android Multithreading & Networking
 19!

AsyncTask Lifecycle

PENDING!

RUNNING!

FINISHED!

ASYNCTASK.STATUS.PENDING!

ASYNCTASK.STATUS.RUNNING!

ASYNCTASK.STATUS.FINISHED!

Android Multithreading & Networking
 20!

Let’s look at our !
Donation Example!

Android Multithreading & Networking
 21!

What do we want?

http://donationweb-4-0.herokuapp.com!

Android Multithreading & Networking
 22!

Donation 5.0 Project Structure

■  api classes for calling REST
service (we’ll investigate these classes in
our networking section)

■  Googles gson for parsing
JSON strings included in build

Android Multithreading & Networking
 23!

Donation 5.0 – Donate Activity

Android Multithreading & Networking
 24!

Donation 5.0 – Donate Activity

Android Multithreading & Networking
 25!

Donation 5.0 – Donate Activity

Android Multithreading & Networking
 26!

Donation 5.0 – Donate Activity

Android Multithreading & Networking
 27!

Donation 5.0 – AsyncTask : GetAllTask

Android Multithreading & Networking
 28!

Donation 5.0 – AsyncTask : GetAllTask

Android Multithreading & Networking
 29!

Donation 5.0 – AsyncTask : InsertTask

Android Multithreading & Networking
 30!

Donation 5.0 – AsyncTask : InsertTask

Android Multithreading & Networking
 31!

Donation 5.0 – ResetTask

Android Multithreading & Networking
 32!

Donation 5.0 – ResetTask

Android Multithreading & Networking
 33!

Donation 5.0 – ResetTask

Android Multithreading & Networking
 34!

Donation 5.0 – Report Activity

Android Multithreading & Networking
 35!

Donation 5.0 – Report Activity

Android Multithreading & Networking
 36!

Donation 5.0 – Report Activity

Android Multithreading & Networking
 37!

Donation 5.0 – Report Activity

Android Multithreading & Networking
 38!

Donation 5.0 – Report Activity

Android Multithreading & Networking
 39!

Donation 5.0 – Report : GetAllTask

Android Multithreading & Networking
 40!

Donation 5.0 – Report : GetAllTask

Android Multithreading & Networking
 41!

Donation 5.0 – Report : GetTask

Android Multithreading & Networking
 42!

Donation 5.0 – Report : GetTask

Android Multithreading & Networking
 43!

Donation 5.0 – Report : DeleteTask

Android Multithreading & Networking
 44!

Donation 5.0 – Report : DeleteTask

Android Multithreading & Networking
 45!

Donation 5.0 – Report : DonationAdapter

Android Multithreading & Networking
 46!

Donation 5.0 – Report : DonationAdapter

Android Multithreading & Networking
 47!

A bit about !
JSON !

& !
Googles !

Gson!
Android Multithreading & Networking
 48!

Question?

❑ Given a particular set of data, how do you store it permanently?

■  What do you store on disk?

■  What format?

■  Can you easily transmit over the web?

■  Will it be readable by other languages?

■  Can humans read the data?

❑  Examples:

■  A Square

■  A Dictionary

■  A Donation…

Android Multithreading & Networking
 49!

Storage Using Plain Text

❑  Advantages

■  Human readable (good for debugging / manual editing)

■  Portable to different platforms

■  Easy to transmit using web

❑ Disadvantages

■  Takes more memory than necessary

❑  Alternative? - use a standardized system -- JSON

■  Makes the information more portable

Android Multithreading & Networking
 50!

❑ Language Independent.

❑ Text-based.

❑ Light-weight.

❑ Easy to parse.

JavaScript Object Notation – What is it?

Android Multithreading & Networking
 51!

§  JSON is lightweight text-data interchange format

§  JSON is language independent*

§  *JSON uses JavaScript syntax for describing data objects

§  JSON parsers and JSON libraries exists for many different

programming languages.

§  JSON is "self-describing" and easy to understand

§  JSON - Evaluates to JavaScript Objects

§  The JSON text format is syntactically identical to the code for
creating JavaScript objects.

§  Because of this similarity, instead of using a parser, a JavaScript
program can use the built-in eval()*** function and execute JSON
data to produce native JavaScript objects.

JavaScript Object Notation – What is it?

Android Multithreading & Networking
 52!

When to use JSON?

❑ SOAP is a protocol specification for exchanging structured

information in the implementation of Web Services.

❑ SOAP internally uses XML to send data back and forth.

❑ REST is a design concept.

❑ You are not limited to picking XML to represent data, you

could pick anything really (JSON included).

Android Multithreading & Networking
 53!

JSON example

{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

Android Multithreading & Networking
 54!

JSON to XML

<?xml version="1.0" encoding="UTF-8"?>

<persons>

<person>

<firstName>John</firstName>

<lastName>Smith</lastName>

<age>25</age>

<address>

<streetAddress>21 2nd Street</streetAddress>

<city>New York</city>

<state>NY</state>

<postalCode>10021</postalCode>

</address>

<phoneNumbers>

<phoneNumber>

<number>212 555-1234</number>

<type>home</type>

</phoneNumber>

<phoneNumber>

<number>646 555-4567</number>

<type>fax</type>

</phoneNumber>

</phoneNumbers>

</person>

</persons>

Android Multithreading & Networking
 55!

JSON vs XML size

❑ XML: 549 characters, 549 bytes

❑ JSON: 326 characters, 326 bytes

❑ XML ~68,4 % larger than JSON!

❑ But a large data set is going to be large regardless of the data
format you use.

❑ Most servers gzip or otherwise compress content before
sending it out, the difference between gzipped JSON and
gzipped XML isn’t nearly as drastic as the difference between
standard JSON and XML.

Android Multithreading & Networking
 56!

JSON vs XML

Favor XML over JSON when any of these is true:

❑  You need message validation

❑  You're using XSLT

❑  Your messages include a lot of marked-up text

❑  You need to interoperate with environments that don't support JSON

Favor JSON over XML when all of these are true:

❑  Messages don't need to be validated, or validating their deserialization is simple

❑  You're not transforming messages, or transforming their deserialization is simple

❑  Your messages are mostly data, not marked-up text

❑  The messaging endpoints have good JSON tools

Android Multithreading & Networking
 57!

Security problems***

❑ The eval() function can compile and execute any JavaScript.

This represents a potential security problem.

❑ It is safer to use a JSON parser (like Gson) to convert a JSON

text to a JavaScript object. A JSON parser will recognize only
JSON text and will not compile scripts.

❑ In browsers that provide native JSON support, JSON parsers
are also faster.

❑ Native JSON support is included in newer browsers and in the
newest ECMAScript (JavaScript) standard.

Android Multithreading & Networking
 58!

JSON Schema

❑ Describes your JSON data format

❑ http://jsonschemalint.com/

❑ http://json-schema.org/implementations

❑ http://en.wikipedia.org/wiki/
JSON#Schema_and_Metadata

Android Multithreading & Networking
 59!

JSON Values

JSON values can be:

❑ A number (integer or floating point)

❑ A string (in double quotes)

❑ A boolean (true or false)

❑ An object (in curly brackets)

❑ An array (in square brackets)

❑ null

Android Multithreading & Networking
 60!

❑ Object

■  Unordered set of name-value pairs

■  names must be strings

■  { name1 : value1, name2 : value2, …, nameN : valueN }

❑ Array

■  Ordered list of values

■  [value1, value2, … valueN]

JSON Values

Android Multithreading & Networking
 61!

Value

num be r

s t r in g

v a lu e

o b je c t

false

null

a rra y

true

Android Multithreading & Networking
 62!

Strings

❑ Sequence of 0 or more Unicode characters

❑ No separate character type

■  A character is represented as a string with a length of 1

❑ Wrapped in "double quotes"

❑ Backslash escapement

Android Multithreading & Networking
 63!

String

s t r in g

"
A n y 	U N IC O D E 	c h a ra c te r 	e x c e p t
"	 	o r 	 	\	 	o r 	 c o n tro l 	 c h a ra c te r

\ "

\

quo ta t io n 	m a rk

re v e rs e 	s o l id u s

/
s o l id u s

b
ba c k s p a c e

fo rm fe e d

n e w l in e

c a rr ia g e 	 re tu rn

h o r iz o n ta l 	 ta b

4 	h e x a d e c im a l 	d ig i t s

f

n

r

t

u

"

Android Multithreading & Networking
 64!

Numbers

❑ Integer

❑ Real

❑ Scientific

❑ No octal or hex

❑ No NaN or Infinity

■  Use null instead

Android Multithreading & Networking
 65!

Number

num be r

d ig i t 	
1 - 9

.0

d ig i t

e

E

d ig i t

-

d ig i t
+

-

Android Multithreading & Networking
 66!

Booleans

❑ true
❑ false

Android Multithreading & Networking
 67!

null

❑ A value that isn't anything

Android Multithreading & Networking
 68!

Object

❑ Objects are unordered containers of key/value pairs

❑ Objects are wrapped in { }
❑ , separates key/value pairs

❑ : separates keys and values

❑ Keys are strings

❑ Values are JSON values

■  struct, record, hashtable, object

Android Multithreading & Networking
 69!

Object

{ : }v a lu es t r in g

o b je c t

,

{	
"_id":"560515770f76130300c69953",	
"usertoken":"11343761234567808125",	
"paymenttype":"PayPal",	
"__v":0,	
"upvotes":0,	
"amount":1999	
}!

Android Multithreading & Networking
 70!

Array

❑ Arrays are ordered sequences of values

❑ Arrays are wrapped in []
❑ , separates values

❑ JSON does not talk about indexing.

■  An implementation can start array indexing at 0 or 1.

Android Multithreading & Networking
 71!

Array

[]v a lu e

a rra y

,

[
{"_id":"560515770f76130300c69953","usertoken":"11343761234567808125","
paymenttype":"PayPal","__v":0,"upvotes":0,"amount":1999},	
	
{"_id":"56125240421892030048403d","usertoken":"11343761234567808125","
paymenttype":"PayPal","__v":0,"upvotes":5,"amount":1234},	
	
{"_id":"5627620ac9e9e303005b113c","usertoken":"11343761234567808125","
paymenttype":"Direct","__v":0,"upvotes":2,"amount":1001}	
]	

Android Multithreading & Networking
 72!

MIME Media Type & Character Encoding

❑ application/json	

❑ Strictly UNICODE.

❑ Default: UTF-8.

❑ UTF-16 and UTF-32 are allowed.

Android Multithreading & Networking
 73!

Versionless

❑ JSON has no version number.

❑ No revisions to the JSON grammar are anticipated.

❑ JSON is very stable.

Android Multithreading & Networking
 74!

Rules

❑ A JSON decoder must accept all well-formed JSON

text.

❑ A JSON decoder may also accept non-JSON text.

❑ A JSON encoder must only produce well-formed JSON

text.

❑ Be conservative in what you do, be liberal in what you

accept from others.

Android Multithreading & Networking
 75!

Donation 5.0, !
Googles Gson & REST!

Android Multithreading & Networking
 76!

Google’s Gson

https://sites.google.com/site/gson/gson-user-guide

Gson is a Java library that can be used to convert Java Objects into
their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. Gson is an open-source project hosted at
http://code.google.com/p/google-gson.

Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code of.

Android Multithreading & Networking
 77!

Donation 5.0 & Google’s Gson

Android Multithreading & Networking
 78!

Donation 5.0 & Google’s Gson

Android Multithreading & Networking
 79!

Donation 5.0 & Google’s Gson

Android Multithreading & Networking
 80!

Summary

❑ JSON is a standard way to exchange data

■  Easily parsed by machines

■  Human readable form

❑ JSON uses dictionaries and lists

■  Dictionaries are unordered

■  Lists are ordered

❑ GSON is Googles JSON parser

■  Very simple to use

Android Multithreading & Networking
 81!

What is REST?

"REST " was coined by Roy Fielding "
in his Ph.D. dissertation [1] to describe a design
pattern for implementing networked systems.

[1] http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm!

Android Multithreading & Networking
 82!

Why is it called "Representational State Transfer"?

Resource!Client! http://www.boeing.com/aircraft/747!

Boeing747.html!

Fuel requirements!
Maintenance schedule!

...!

•  The Client references a Web resource using a URL. !
•  A representation of the resource is returned (in this case as an HTML document).!
•  The representation (e.g., Boeing747.html) places the client in a new state. !
•  When the client selects a hyperlink in Boeing747.html, it accesses another

resource. !
•  The new representation places the client application into yet another state. !
•  Thus, the client application transfers state with each resource representation.!

Android Multithreading & Networking
 83!

REST Characteristics

❑ REST is not a standard (unlike SOAP)

■  You will not see the W3C putting out a REST specification.

■  You will not see IBM or Microsoft or Sun selling a REST developer's toolkit.

❑ REST is just a design pattern

■  You can't bottle up a pattern.

■  You can only understand it and design your Web services to it.

❑ REST does prescribe the use of standards:

■  HTTP

■  URL

■  XML/HTML/GIF/JPEG/etc. (Resource Representations)

■  text/xml, text/html, image/gif, image/jpeg, etc. (Resource Types, MIME

Types)

Android Multithreading & Networking
 84!

REST Principles

❑ Everything is a resource

❑ Every resource is identified by a unique identifier

❑ Use simple and uniform interfaces

❑ Communication is done by representation

❑ Be Stateless

❑ We’ll look at these, and more, next year J.

Android Multithreading & Networking
 85!

Donation 5.0 & Rest.java

86!Android Multithreading & Networking

Donation 5.0 & Rest.java – GET Request

87!Android Multithreading & Networking

Donation 5.0 & Rest.java – POST Request

88!Android Multithreading & Networking

Donation 5.0 & Rest.java – DELETE Request

89!Android Multithreading & Networking

Android Networking!
(Using Volley)!

Android Multithreading & Networking
 90!

Volley is an HTTP library developed by Google that
makes networking for Android apps easier and most
importantly, faster. Volley is available through the
open AOSP repository.

I n t r oduced du r i ng Goog l e I /O 2013 , i t
was developed because of the absence, in the
Android SDK, of a networking class capable of
working without interfering with the user experience.

Android Multithreading & Networking
 91!

Volley

❑  Volley offers the following benefits:

■  Automatic scheduling of network requests.

■  Multiple concurrent network connections.

■  Transparent disk and memory response caching with standard HTTP

cache coherence.

■  Support for request prioritization.

■  Cancellation request API. You can cancel a single request, or you can set blocks

or scopes of requests to cancel.

■  Ease of customization, for example, for retry and backoff.

■  Strong ordering that makes it easy to correctly populate your UI with data fetched

asynchronously from the network.

■  Debugging and tracing tools.

Android Multithreading & Networking
 92!

Why Volley?

❑ Avoid HttpUrlConnection and HttpClient

■  On lower API levels (mostly on Gingerbread and Froyo),
HttpUrlConnection and HttpClient are far from being perfect.
There are some known issues and bugs that were never fixed.

■  Moreover, HttpClient was deprecated in the last API update (API
22), which means that it will no longer be maintained and may be
removed in a future release.

■  These are sufficient reasons for deciding to switch to a more
reliable way of handling your network requests.

93!Android Multithreading & Networking

Why Volley?

❑ Avoid AsyncTask

■  Since the introduction of Honeycomb (API 11), it's been mandatory to
perform network operations on a separate thread, different from the
main thread. This substantial change led the way to massive use of
the AsyncTask<Params, Progress, Result> specification.

■  The class is pretty straightforward, way easier than the
implementation of a service, and comes with a ton of examples
and documentation.

■  The main problem (next slide), however, is the serialization of the
calls. Using the AsyncTask class, you can't decide which request
goes first and which one has to wait. Everything happens FIFO, first
in, first out.

94!Android Multithreading & Networking

Problem Solved…

❑  The problems arise, for example, when you have to load a list of items

that have attached a thumbnail. When the user scrolls down and
expects new results, you can't tell your activity to first load the JSON of
the next page and only then the images of the previous one. This can
become a serious user experience problem in applications such as
Facebook or Twitter, where the list of new items is more important than
the thumbnail associated with it.

❑  Volley aims to solve this problem by including a powerful cancellation
API. You no longer need to check in onPostExecute whether the
activity was destroyed while performing the call. This helps avoiding
an unwanted NullPointerException.

95!Android Multithreading & Networking

Why Volley?

❑ It's Much Faster

■  Some time ago, the Google+ team did a series of performance
tests on each of the different methods you can use to make
network requests on Android. Volley got a score up to ten times
better than the other alternatives when used in RESTful
applications.

❑ Small Metadata Operations

■  Volley is perfect for small calls, such as JSON objects, portions of

lists, details of a selected item, and so on. It has been devised for
RESTful applications and in this particular case it gives its very
best.

96!Android Multithreading & Networking

Why Volley?

❑ It Caches Everything

■  Volley automatically caches requests and this is something truly life-
saving. Let’s return for a moment to the example given earlier. You
have a list of items—a JSON array let’s say—and each item has a
description and a thumbnail associated with it. Now think about what
happens if the user rotates the screen: the activity is destroyed, the list
is downloaded again, and so are the images. Long story short, a
significant waste of resources and a poor user experience.

■  Volley proves to be extremely useful for overcoming this issue. It
remembers the previous calls it did and handles the activity
destruction and reconstruction. It caches everything without you
having to worry about it.

97!Android Multithreading & Networking

Why Not Volley?

❑ It is not so good, however, when employed for

streaming operations and large downloads. Contrary to
common belief, Volley's name doesn't come from the
sport dictionary. It’s rather intended as repeated bursts
of calls, grouped together. It's somehow intuitive why
this library doesn't come in handy when, instead of a
volley of arrows, you want to fire a cannon ball.

98!Android Multithreading & Networking

Under the Hood

❑ Volley works on

three different
levels with each
level operating on
its own thread.

99!Android Multithreading & Networking

Under the Hood

❑ Main Thread

■  On the main thread, consistently with what you already do in the
AsyncTask specification, you are only allowed to fire the request
and handle its response. Nothing more, nothing less.

■  The main consequence is that you can actually ignore everything
that was going on in the doInBackground method. Volley
automatically manages the HTTP transactions and the catching
network errors that you needed to care about before.

100!Android Multithreading & Networking

Under the Hood

❑ Cache and Network Threads

■  When you add a request to the queue, several things happens under
the hood. First, Volley checks if the request can be serviced from
cache. If it can, the cached response is read, parsed, and delivered.
Otherwise it is passed to the network thread.

■  On the network thread, a round-robin with a series of threads is
constantly working. The first available network thread dequeues the
request, makes the HTTP request, parses the response, and writes it
to cache. To finish, it dispatches the parsed response back to the
main thread where your listeners are waiting to handle the result.

101!Android Multithreading & Networking

Getting Started With Volley

❑ Download the Volley Source

■  git clone https://android.googlesource.com/platform/frameworks/volley

❑ Import Source as Module
■  File -> New Module, choose Import Existing Project

■  Add dependency compile project(':volley')

❑ Alternative – unofficial mirror site so beware

■  compile 'com.mcxiaoke.volley:library-aar:1.0.15'

102!Android Multithreading & Networking

Using Volley

❑ Volley mostly works with just two classes, RequestQueue

and Request. You first create a RequestQueue, which
manages worker threads and delivers the parsed results
back to the main thread. You then pass it one or more
Request objects.

❑ The Request constructor always takes as parameters the
method type (GET, POST, etc.), the URL of the resource,
and event listeners. Then, depending on the type of request,
it may ask for some more variables.

103!Android Multithreading & Networking

Using Volley *

❑  Here we create a RequestQueue

object by invoking one of Volley's
convenience methods,
Volley.newRequestQueue.
This sets up a RequestQueue
object, using default values defined
by Volley.

❑  As you can see, it’s incredibly
straightforward. You create the
request and add it to the request
queue. And you’re done.

❑  If you have to fire multiple requests
in several activities, you should
avoid using this approach - better
to instantiate one shared request
queue and use it across your
project (CoffeeMate 5.0)

104!Android Multithreading & Networking

CoffeeMate Example!
(Using Volley)!

Android Multithreading & Networking
 105!

CoffeeMate 5.0 API & Callback Interface

106!Android Multithreading & Networking

■  api class for calling
REST service

■  callback mechanism to
update UI

CoffeeMate 5.0 & Volley

107!Android Multithreading & Networking

❑  Here we ‘attach’ our VolleyListener to the
Fragment (CoffeeFragment) and then getAll() of
the current users coffees.

❑  This method triggers a call to setList() via the
callback interface, which in turn updates the UI
ONLY when our API call completes.

❑  We use a similar approach for Updating, Deleting
etc.

CoffeeApi –
refactored with

Volley *

108!Android Multithreading & Networking

❑  Here we create a StringRequest
GET request.

❑  On a successful RESPONSE we convert
the result into a List of coffees and

❑  Trigger the callback to set the list in the
fragment (and cancel the refresh
spinner)

CoffeeFragment (Extracts) *

Overriding the necessary
methods from the

interface

Android Multithreading & Networking
 109!

CoffeeMate 5.0 – Using AsyncTasks Vs Volley

❑ Using AsyncTasks

■  CoffeeApi

■  CallBackListener

■  Rest

■  TaskManager

■  CRUD Tasks x 6

❑ Total = 10 Classes

❑ Using Volley

■  CoffeeApi

■  VolleyListener

❑ Total = 2 Classes

Android Multithreading & Networking
 110!

Summary

❑ We looked at data persistence and multithreading in Android

Development and how to use an SQLite database
❑ We covered a brief overview of JSON & Googles Gson

❑ We covered in detail the use of AsyncTasks and Volley

to execute background tasks and make API calls

❑ We Compared the two in our CoffeeMate Case Study

Android Multithreading & Networking
 111!

References

❑ Victor Matos Notes – Lesson 13 (Cleveland State

University)

❑ Android	Developers
	h"p://developer.android.com/index.html	

Android Multithreading & Networking
 112!

Sources

❑ http://en.wikipedia.org/wiki/JSON

❑ http://www.w3schools.com/json/

❑ http://www.json.org/

❑ http://json-schema.org

❑ http://www.nczonline.net/blog/2008/01/09/is-json-

better-than-xml/

❑ http://en.wikipedia.org/wiki/SOAP_(protocol)

❑ http://en.wikipedia.org/wiki/REST

❑ http://stackoverflow.com/questions/16626021/json-

rest-soap-wsdl-and-soa-how-do-they-all-link-together

Android Multithreading & Networking
 113!

Questions?!

Android Multithreading & Networking
 114!

