
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Persistence

Android Persistence 2!

Agenda & Goals
❑ Be aware of the different approaches to data persistence in

Android Development
❑ Be able to work with the SQLiteOpenHelper &
SQLiteDatabase classes to implement an SQLite
database on an Android device (to manage our Donations)

❑ Be able to work with SharedPreferences to manage our
Login & Register screens

Android Persistence 3!

Main Idea – why do we need Persistence?
❑ Android can shut down and restart your app

■  When you rotate the screen
■  When you change languages
■  When your app is in background and Android is short

on memory
■  When you hit the Back button

❑ Problem
■  You risk losing user changes and data

❑ Solutions ??

Android Persistence 4!

Solutions
❑ Android provides several options for you to save persistent

application data.
❑ The solution you choose depends on your specific needs, such

as whether the data should be private to your application or
accessible to other applications (and the user) and how much
space your data requires.

❑ Android provides a way for you to expose your private data to
other applications — with a Content Provider.
■  A content provider is an optional component that exposes read/write access to

your application data, subject to whatever restrictions you want to impose.

5!Android Persistence

Data Storage Solutions *
❑ Shared Preferences

■  Store private primitive data in key-value pairs.
❑ Internal Storage

■  Store private data on the device memory.
❑ External Storage

■  Store public data on the shared external storage.
❑ SQLite Databases

■  Store structured data in a private database.
❑ Network Connection

■  Store data on the web with your own network server.
6!Android Persistence

Android Persistence 7!

Data Storage Solutions *
❑ Bundle Class

■  A mapping from String values to various Parcelable types
and functionally equivalent to a standard Map.

■  Does not handle Back button scenario. App restarts from
scratch with no saved data in that case.

❑ File
■  Use java.io.* to read/write data on the device's internal

storage.

Case Study!
❑ Donation – an Android App to keep track of

donations made to ‘Homers Presidential
Campaign ’.

❑ App Features
■  Accept donation via number picker "

or typed amount
■  Keep a running total of donations
■  Display report on donation amounts"

and types
■  Display running total on progress "

bar
Android Persistence 8!

Ultimate Case Study – Donation 4.0

Android Persistence 9!

 !
Donation.4.0 

Using an SQLite Database

Android Persistence 10!

Donation 4.0 – Project Structure (Classes)

■  9 java source files
⬥  Our Database classes

■  3 xml layouts
■  1 xml menu
■  6 xml files for resources
■  1 xml ‘configuration’ file

Android Persistence 11!

Donation 4.0 – Project Structure (Resources)

■  9 java source files
⬥  Our Database classes

■  7 xml layouts
■  1 xml menu
■  6 xml files for resources
■  1 xml ‘configuration’ file

Android Persistence 12!

Idea
❑ Goal

■  Enhance Donation.3.0 by managing the Donations in an
SQLite Database.

❑ Approach
■  Implement/extend specific classes to add the database

functionality to the app.

Android Persistence 13!

Database Programming in Android *
❑  Android provides full support for SQLite

databases. Any databases you create will be
accessible by name to any class in the
application, but not outside the application.

❑  The recommended method to create a new
SQLite database is to create a subclass of
SQLiteOpenHelper and override the
onCreate() method, in which you can
execute a SQLite command to create tables in
the database. For example:

Android Persistence 14!

Database Programming in Android *
❑  You can then get an instance of your SQLiteOpenHelper implementation using the constructor

you've defined. To write to and read from the database, call getWritableDatabase() and
getReadableDatabase(), respectively. These both return a SQLiteDatabase object that
represents the database and provides methods for SQLite operations.

❑  You can execute SQLite queries using the SQLiteDatabase query() methods, which accept
various query parameters, such as the table to query, the projection, selection, columns, grouping,
and others. For complex queries, such as those that require column aliases, you should use
SQLiteQueryBuilder, which provides several convenient methods for building queries.

❑  Every SQLite query will return a Cursor that points to all the rows found by the query. The Cursor is
always the mechanism with which you can navigate results from a database query and read rows
and columns.

Android Persistence 15!

Database Programming in Android
❑  With SQLite, the database is a simple disk file. All of the data structures making up a relational database -

tables, views, indexes, etc. - are within this file

❑  RDBMS is provided through the api classes so it becomes part of your app

❑  You can use the SQL you learned in a database module

❑  You should use DB best practices

■  Normalize data

■  Encapsulate database info in helper or wrapper classes

■  Don’t store files (e.g. images or audio), Instead just store the path string

Android Persistence 16!

Donation – DBDesigner *
Our Table & Column names

(SQL)

Creating the Table (or Tables)

Drop the Table (if we change
the schema)

Android Persistence 17!

Donation – DBManager *

ContentValues are key/value pairs that are used
when inserting/updating databases. Each

ContentValue object corresponds to one row in a
table

Our database reference

Returns a reference to the
database created from our

SQL string

Android Persistence 18!

Donation – DBManager *

You can execute standard SQL if you like?

This method ‘converts’ a Cursor
object into a Donation Object

A Cursor provides random read-write access to
the resultset returned by a database query

Android Persistence 19!

Other Cursor Functions
❑ moveToPrevious
❑ getCount
❑ getColumnIndexOrThrow
❑ getColumnName
❑ getColumnNames
❑ moveToPosition
❑ getPosition

Android Persistence 20!

Android Persistence 21!

 !
Donation.4.0 

Using the
Application Object

Maintaining Global Application State
❑ Sometimes you want to store data, like global variables

which need to be accessed from multiple Activities –
sometimes everywhere within the application. In this
case, the Application object will help you.

❑ Activities come and go based on user interaction
❑ Application objects can be a useful ‘anchor’ for an

android app
❑ You can use it to hold information shared by all activities

22!Android Persistence

Application Object Callbacks
❑  onConfigurationChanged() Called by the system when the device

configuration changes while your component is running.
❑  onCreate() Called when the application is starting, before any other

application objects have been created.
❑  onLowMemory() This is called when the overall system is running low

on memory, and would like actively running processes to tighten their
belts.

❑  onTerminate() This method is for use in emulated process
environments. It will never be called on a production Android device,
where processes are removed by simply killing them; no user code
(including this callback) is executed when doing so.

23!Android Persistence

The Application Object *

Android Persistence 24!

Androidmanifest.xml!

Donation 4.0 – DonationApp Application Object *

Our Database Reference

Adding a Donation

Android Persistence 25!

Refactor existing Activities/Classes
❑ In order to make full use of our Database and Application

object we need to refactor the classes in the project.
❑ This will form part of the Practical Lab (Lab 5) but we’ll have a

quick look now at some of the refactoring that needs to be
done.

❑ We also add in a new Menu option to ‘Reset’ the database
once the target has been reached and keep track of the
current total donated if the app is shut down are restarted.

Android Persistence 26!

Our DonationApp reference

Donation 4.0 – Base (Refactored, extract) *

Invoking the Application wide methods

‘Binding’ to our Application Object

Android Persistence 27!

Our new ‘Reset’ menu option

Checking the database

Donation 4.0 – Base (Refactored, extract) *

Android Persistence 28!

Donation 4.0 – Donate (Refactored) *

Invoking the Application wide methods

Android Persistence 29!

Donation 4.0 – DonationAdapter *

Android Persistence 30!

Donation 4.0 – Report		

Android Persistence 31!

Donation 4.0 – ‘Reset’ Menu Item

Android Persistence 32!

Using A Splash Screen, !
Login Screen / Register Screen!

&!
Application Object!

Android Persistence 33!

What do we want exactly?
❑ Display Splash Screen for a

few seconds
❑ Display Login Screen
❑ Allow User to Register
❑ Only show Home Screen

once valid details entered
❑ Logout Menu Option
❑ AND Manage our DB via

Application Object

Android Persistence 34!

Donation 4.0 - Splash	

Start Login Screen via
Intent

Handler object
associated with single

thread

Android Persistence 35!

Update Manifest File

Activity to Launch

Android Persistence 36!

Using SharedPreferences!

Android Persistence 37!

SharedPreferences (1)
§  Three forms:!

ú  Share across all components in an application!
   getSharedPreferences(“SomeString”,Activity.MODE_PRIVATE);!

ú  Store only data needed by this Activity!
   getPreferences(Activity.MODE_PRIVATE);!

ú  Store only data needed by this Activity when Activity becomes
inactive (but not when finished)!
   Eg. Orientation change from portrait to landscape!
   use Bundle in onSaveInstanceState / onRestoreInstanceState / onCreate!

Android Persistence 38!

SharedPreferences (2)
❑ Create your SharedPreferences instance

❑ Add data in the form : <String Key,String Value>

❑ Use ‘Key’ to get ‘Value’

❑ Reset the preferences (clear)

SharedPreferences settings
 = this.getSharedPreferences("Demo", MODE_PRIVATE);

SharedPreferences.Editor editor = settings.edit();

editor.putString("name", "value");
editor.commit();

String str = settings.getString("name", "defaultValue");

editor.clear().commit();
Android Persistence 39!

Donation 4.0 – activity_login.xml

Android Persistence 40!

Donation 4.0 – Login *

Load your Preferences!

Default value!

Android Persistence 41!

Donation – Login *

Update Preferences !
with data!

Retrieving existing!
details!

Verifying entered details!

Android Persistence 42!

Donation 4.0 – Register *
Retrieving existing!

prefs file!

Update Preferences !
with new data!

Android Persistence 43!

Donation 4.0 – Logout method (in Base)
Resetting ‘loggedin’ to false!

Returning to the ‘Login’ screen!

Android Persistence 44!

Donation 4.0 – ‘Logout’ Menu Item

Android Persistence 45!

Donation – activity_donate.xml

Android Persistence 46!

Donation 4.0 – Donate ‘onCreate()’ extract *
Retrieving existing!

Username from Prefs file!

Applying some ‘styling’ and
updating our TextView!

Android Persistence 47!

End Result – Donation 4.0

Android Persistence 48!

More Reading
❑  JavaDoc: Activity

■  http://developer.android.com/reference/android/app/"
Activity.html
⬥  Introductory parts give lots of details

❑ Chapters
■  Handling Activity Lifecycle Events and
■  Handling Rotation

⬥ From The Busy Coder’s Guide to Android Development "
by Mark Murphy.
■  http://commonsware.com/Android/

Android Persistence 49!

Questions?!

Android Persistence 50!

