
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

The image cannot
be displayed. Your
computer may not
have enough
memory to open the
image, or the image
may have been
corrupted. Restart
your computer, and

Application Design

Application Structure
 2!

Agenda & Goals

❑ Application Design

❑ Donation Data Model

❑ More Menu Navigation

❑ Creating and using Custom Adapters

Application Structure
 3!

Introduction – App Design

❑ The structure of an Android application is fairly rigidly defined. In

order for things to work properly, you need to put certain files in
the right places.

❑ As the complexity of an app increases, generally, so too does
the design and structure of the app.

❑ From the developers perspective, it is important to try and
maintain the rigid, highly organised, app structure, following well
established guidelines and principles.

❑ Here, we try and follow these principles in refactoring our
Donation App to include a Base Class and a Model.

Application Structure
 4!

Case Study!

5!

❑ Donation – an Android App to keep track of
donations made to ‘Homers Presidential
Campaign ’.

❑ App Features

■  Accept donation via number picker "

or typed amount

■  Keep a running total of donations

■  Display report on donation amounts"

and types

■  Display running total on progress "

bar

Application Structure

 !
Donation.3.0 

Introducing the Model  
& 

Base Class

Application Structure
 6!

Application Structure
 7!

Donation 3.0 *

Custom Menu!

Application Structure
 8!

Donation 3.0 – Project Structure *

■  3 java source files

■  4 xml layouts

■  1 xml menu

■  6 xml files for resources

■  1 xml ‘configuration’ file

Application Structure
 9!

Donation 3.0 - Model

We’ll refactor this class
in Donation 4.0 to
include an ‘id’!

Application Structure
 10!

Donation 3.0 – Base Class *

We’ll take a closer look
at these methods in
“Menus Part 2”!

Our List of Donations!

Adding a ‘donation’!

Why a ‘Base’ Class?? *

❑ Green Programming – Reduce, Reuse, Recycle

■  Reduce the amount of code we need to implement
the functionality required (Code Redundancy)

■  Reuse common code throughout the app/project
where possible/appropriate

■  Recycle existing code for use in other apps/projects

❑ All good for improving Design

11!Application Structure

 !
Donation.3.0 

Using Menus 
Part 2

Application Structure
 12!

Enabling/Disabling Menu Items on the fly

❑ There may be times where you don’t want all your menu

options available to the user under certain situations

■  e.g – if you’ve no donations, why let them see the report?

❑ You can modify the options menu at runtime by overriding the
onPrepareOptionsMenu() method

■  called each and every time the user presses

the MENU button.

Application Structure
 13!

Menus in Donation 3.0 *

Menu Specification!

Note the use of
an ‘onClick’

attribute!

Application Structure
 14!

Donation 3.0 Menu Event Handler *

Application Structure
 15!

Menu Specification!

Donation 3.0 – onPrepareOptionsMenu()

Application Structure
 16!

Donate!

Report!

 !
Donation.3.0 

Using ArrayAdapters 
& 

ListViews

Application Structure
 17!

Introducing Adapters

❑  Adapters are bridging classes that bind data to Views (eg ListViews)

used in the UI.

■  Responsible for creating the child Views used to represent each item within the

parent View, and providing access to the underlying data

❑  Views that support adapter binding must extend the AdapterView

abstract class.

■  You can create your own AdapterView-derived controls and create new custom

Adapter classes to bind to them.

❑  Android supplies a set of Adapters that pump data into native UI

controls and layouts (next slide)

Application Structure
 18!

Building Layouts with an Adapter

Application Structure
 19!

❑ Because Adapters are responsible for supplying the data AND for
creating the Views that represent each item, they can radically modify
the appearance and functionality of the controls they’re bound to.

❑ Most Commonly used Adapters

■  ArrayAdapter

⬥  uses generics to bind an AdapterView to an array of objects of the specified class.

⬥  By default, uses the toString() of each object to create & populate TextViews.

⬥  Other constructors available for more complex layouts (as we will see later on)

⬥  Can extend the class to use alternatives to simple TextViews (as we will see later on)

❑  See also SimpleCursorAdapter – attaches Views specified within a layout to the
columns of Cursors returned from Content Provider queries.

Building Layouts with an Adapter

Application Structure
 20!

Filling an Adapter View with Data

❑  You can populate an AdapterView such as ListView or GridView by

binding the AdapterView instance to an Adapter, which retrieves data
from an external source and creates a View that represents each data
entry.

q The arguments for this constructor are:!

n  Your app Context!
n  The layout that contains a TextView for each string in the array!
n  The string array (numbers)!

q Then simply call setAdapter() on your ListView:! Donation.2.0!

Application Structure
 21!

Handling Click Events

❑ You can respond to click events on each item in an

AdapterView by implementing the
AdapterView.OnItemClickListener interface

q We won’t be covering this in our Case Study, but would be
desirable to see in your project!

Application Structure
 22!

 !
Donation.3.0 

Custom Adapters

Application Structure
 23!

Customizing the ArrayAdapter *

❑ By default, the ArrayAdapter uses the toString() of the object

array it’s binding, to populate the TextView available within the
specified layout.

❑ Generally, you customize the layout to display more complex views
by..

■  Extending the ArrayAdapter class with a type-specific variation, eg

■  Override the getView() method to assign object properties to layout View
objects. (see our case study example next)

Application Structure
 24!

The getView() Method

❑ Used to construct, inflate, and populate the View that will be displayed

within the parent AdapterView class (eg a ListView) which is being
bound to the underlying array using this adapter.

❑ Receives parameters that describes

■  The position of the item to be displayed

■  The View being updated (or null)

■  The ViewGroup into which this new View will be placed

❑ Returns the new populated View instance as a result

❑  A call to getItem() will return the value (object) stored at the specified
index in the underlying array.

Application Structure
 25!

Donation 3.0 – Report Activity *

Application Structure
 26!

Donation 3.0 - DonationAdapter class

Custom ArrayAdapter of type ‘Donation’

Custom Row Layout

Every time this method is called we create a
new ‘Row’ (a Donation from our List) to add to

the ListView

Application Structure
 27!

Donation 3.0 - row_donate.xml

Each time getView() is called, it creates a new ‘Row ‘ and binds the individual Views
(widgets) above, to each element of the object array in the ArrayAdapter.

Application Structure
 28!

Application Structure
 29!

Resulting ListView (inside our Report) *

Summary

❑ We looked at Application Structure and Design

❑ We revisited the Structure of our App and introduced

a ‘Donation Model’ and Base class

❑ We looked at more Menu Navigation

❑ We Created and used Custom Adapters

Application Structure
 30!

Questions?!

Application Structure
 31!

