Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

Android Anatomy

Android Anatomy 2

Agenda %

- Overview of Android Application Components
1 The Android Application Life Cycle
- The Online Developer Resources

A The “Donation” Case Study — a first (very briefl) look. ..

Android App Components

J App components are the essential building blocks of an Android
app. Each component is a different point through which the
system can enter your app.

- Not all components are actual entry points for the user and some
depend on each other, but each one exists as its own entity and
plays a specific role—each one is a unigue building block that
helps define your app's overall behavior.

 There are four different types of app components. Each type
serves a distinct purpose and has a distinct lifecycle that defines
how the component is created and destroyed.

Jd We'll briefly mention a few other components (of sorts) that also
make up your App.

Android App Components

1. Activities
represents a single screen with a user interface
acts as the ‘controller’ for everything the user sees on its associated screen
iImplemented as a subclass of Activity
e.g. email app (listing your emails)

2. Services

a component that runs in the background to perform long-running operations or
to perform work for remote processes

does not provide a user interface

can be started by an activity

IS implemented as a subclass of Service
e.g. music player (playing in background)

Android App Components

3. Content Providers

manages a shared set of app data

can store the data in the file system, an SQLite database, on the web, or any
other persistent storage location your app can access

through the content provider, other apps can query or even modify the data
e.g. Users Contacts (your app could update contact details)

4. Broadcast Recelvers
a component that responds to system-wide broadcast announcements
broadcasts can be from both the system and your app

implemented as a subclass of BroadcastReceiver and each broadcast is
delivered as an Intent object

e.g. battery low (system) or new email (app via notification)

How it all Fits Together *

- Based on the Model View Controller
design pattern.

« Don’t think of your program as a linear
execution model:

Think of your program as existing in
logical blocks, each of which performs
some actions.

* The blocks communicate back and forth
via message passing (Intents)

Added advantage, physical user
interaction (screen clicks) and inter
process interaction can have the same
programming interface

Also the OS can bring different pieces of
the app to life depending on memory
needs and program use

See the Appendix for a more detailed
explanation of these components

Big N.B.
for all these!

For each distinct logical piece of program
behavior you’ll write a Java class (derived
from a base class).

Activities/Fragments: Things the user
can see on the screen. Basically, the
‘controller’ for each different screen in
your program.

Services: Code that isn’t associated
with a screen (background stuff, fairly
common)

Content providers: Provides an
interface to exchange data between
programs (usually SQL based)

You’ll also design your layouts (screens),

with various types of widgets (Views),
which is what the user sees via Activities &
Fragments

The (Application) Activity Life Cycle *

J Android Is designed around the unigue requirements of

mobile applications.

In particular, Android recognizes that resources (memory and battery, for
example) are limited on most mobile devices, and provides mechanisms to
conserve those resources.

J The mechanisms are evident in the Android Activity
Lifecycle, which defines the states or events that an
activity goes through from the time it is created until it
finishes running.

See the Appendix for a more detailed explanation of these ‘states’

J An application itself is a set of activities with a Linux process
to contain them

. However, an application DOES NOT EQUAL a process

- Due to (the previously mentioned) low memory conditions,
an activity might be suspended at any time and its process
be discarded

¢ The activity manager remembers the state of the activity
however and can reactivate it at any time

¢ Thus, an activity may span multiple processes over the
life time of an application

The (Application) Activity Life Cycle

o

The Activity Life Cycle *

* The Activity has a number of
predefined functions that you

override to handle events from I — ﬂi"_
the system. | backioine o —
* If you don’t specify what should ——— e
be done the system will perform - CeeaE= Rk
the default actions to handle = el
events. comos o e
« Why would you want to handle Cinrom: artne'scoy]
events such as onPause (), (ommas —
etC. ' ? P e = Sm——
You will probably want to do " -
things like release resources, SO
stop network connections, !
back up data, etc... _°"°°’1L

Android Anatomy

The Activity Life Cycle

d At the very minimum ,you

need (and is supplied) l’“"?»i'cﬁ‘l‘:f@‘@"? —

onCreate () - e
JdonStop () and =D m.fum.l o-

onDestroy () are _rnning ‘%@,

optional and may never mmm -

be called el remes l—mmm:m - b=
JIf you need persistence, p———

the save needs to S—

happen in onPause () e —

EED)

Android Anatomy

410 SupEl uliowar Ly,

[ie.wit.lifecycle 19 Log.v("LifeCycle", "onStart() Called...");
¢ & MainActivity 20 }
[lie.wit.lifecycle (androidTest) -) Android Emulator - Nexus_5_API_23:5554
22 @Ooverride —

[Elie.wit.lifecycle (test)

« 7:Structure

' 23 of protected voic
| Cires 24 super.onRe¢
- & Gradle Scripts 25 Log.v("Li
2 26 }
— z ALl
* =3 28
_Xal I l e O 29 @Override
I ©® 30 @f protected voic LifeCyc|e
31 super.onS
32 Log.v("Li
83/ }
34 Hello World!
35 @Override
36 of protected voic
37 super.onDg
38 Log.v("Li
L h 39 }
ser Launches App 2
41 @Override
42 ol protected voi
43 super.onP
44 Log.v("Li
45 }
46
47 @Override
48 of protected voic
49 super.onRe
50 ¥ Log.v("Li
51 }
52 }
53
Android Monitor
[i¥ Emulator Nexus_5_API_23 Android 6.0, APl 23 a e wit.lifecycle (11916)
@ if& logcat Monitors -+*
o _ 09-28 16:29:42.487 11916-11916/ie.wit.lifecycle V/LifeCycle: onCreate() Called...
é’}w 09-28 16:29:42.490 11916-11916/ie.wit.lifecycle V/LifeCycle: onStart() Called...
ﬁ ________ [¥ ©09-28 16:29:42.490 11916-11916/ie.wit.lifecycle V/LifeCycle: onResume() Called...
HRE
@@ g
1?2
§ @
)
3 £

1

[Elie.wit.litecycle 19 Log.v("LifeCycle", "onStart() Called...");
€ % MainActivity 20 }

[ie.wit.lifecycle (androidTest) 21 Android Emulator - Nexus_5_API_23:5554

[ie.wit.lifecycle (test) gg of S?_Z:;Etigz vall

| |
Cares 24 super.onRe
T & Gradle Scripts 25 Log. v("Li
}

«{ 7: Structure

4 5 27
mple (2) * ¢ :
— 5] 29 @Override
_Xa p e ©) 30 of protected voic
31 super.onS
32 Log.v("Li
33 }
34
35 @Override
36 of protected voic
37 super.onDé
38 Log.v("Li
1) 39 }
ser selects ‘'Home 40
41 @Override
42 of protected voic
43 super.onP:
44 Log.v("Li
45 }
46
47 @Override
48 of protected voic
49 super.onRé
50 Log.v("Li
51 }
52 }
53

£

Play Games

Android Monitor

[i¥ Emulator Nexus_5_API_23 Android 6.0, API 23 a ie.wit.lifecycle (13532)

(O il logcat Monitors "
o = 09-28 16:31:38.898 13532-13932/ie.wit.lifecycle V/LifeCycle: onPause() Called...
é’; 09-28 16:31:39.749 13532-135932/ie.wit.lifecycle V/LifeCycle: onStop() Called...
I
.
a0 @y
e
? 8
g G
=
3 £

£

Elle.wit.litecycle 19 Log.v("LifeCycle", "onStart() Called...");

c % MainActivity 20 }
[F1ie.wit.lifecycle (androidTest) 21) Android Emulator - Nexus_5_API_23:5554
22 @Override i —

[Eie.wit.lifecycle (test)

« 7: Structure

1 23 of protected voic
| f | Cares 24 super.onRe
- & Gradle Scripts 25 Log.v("Li
2 26 }
g — 27 Att4
%
_Xa | e 8 o 29 @Override
I I I l O] 30 of protected voic LifeCyc|e
31 super.onS
32 Log.v("Li
33 }
34 Hello World!
35 @Ooverride
36 @f protected voic
37 super.onDe
38 Log.v("Li
tarts A i
ser restarts App ;
41 @Override
42 of protected voic
43 super.onPz
44 Log.v("Li
45 }
46
47 @Override
48 of protected voic
49 super. onRé
50 Log.v("Li
51 }
52 }
53

Android Monitor

[i¥ Emulator Nexus_5_API_23 Android 6.0, APl 23 H iewt.lifecycle (13532)

ifi& logcat = Monitors —+*

i} 09-28 16:32:14.834 13532-13932/ie.wit.lifecycle V/LifeCycle: onReStart() Called...
09-28 16:32:14.836 13532-13932/ie.wit.lifecycle V/LifeCycle: onStart() Called...
________ ¥ 09-28 16:32:14.836 13532-13432/ie.wit.lifecycle V/LifeCycle: onResume() Called...

faOF

¥ 2: Favorites

-~
-
Y

Build Variants
17

1

Elle.wit.litecycle 19 Log.v("LifeCycle", "onStart() Called...");

c) & MainActivity 20 }
[ie.wit.lifecycle (androidTest) 21 , Android Emulator - Nexus_5_API_23:5554
22 @Override

[Eie.wit.lifecycle (test)

g /:>tructure

' 23 of protected voic
Cires 24 super. onRé
L ® Gradle Scripts 25 Log.v("Li
2 26 }
s 27
[* & 28
_Xal I ' e J 29 @Ooverride
- D) 30 of protected voic
31 super.onS
32 Log.v("Li
33 }
34
35 @Override
36 of protected voic
37 super. onDé
38 Log.v("Li
Ser oeleCls bacC T
41 @Override
42 of protected voic
43 super.onPz
44 Log.v("Li
45 }
46
47 @Override
48 of protected voic
49 super.onRé
50 Log.v("Li
51 }
52 }
53
Android Monitor
78 Emulator Nexus_5_API_23 Android 6.0, API 23 [ie.wit.lifecycle (S&32) Py Camzs
[} | irk logcat = Monitors —*
> i} 09-28 16:32:48.899 13532-135B2/ie.wit.lifecycle V/LifeCycle: onPause() Called.™
(:ﬁ 09-28 16:32:49.337 13532-135B2/ie.wit.lifecycle V/LifeCycle: onStop() Called...
§ _______ [¥ 09-28 16:32:49.337 13532-135B2/ie.wit.lifecycle V/LifeCycle: onDestroy() Called...
% & L —
e g
I e
| ? ;_g

W8 BUlla variants
&

S0, after all that, how do | Design my App?

* The way the system architecture is * Think about what background services you

set up is fairly open: might need to incorporate.
App design is somewhat up to . Exchanging data
you, but you still have to live with . Listening for connections?
the Android execution model. '

. . - Periodically downloading network
- Start with the different screens/ informa’[ior%/ from a Ser\/egr?

éaeéo‘#]seéve'gvr";)ctgﬁ‘ttrgmgd“E‘jrtm" . Think about what information must be
g N stored in long term memory (SQLite) and
different Activities (Controllers) that possibly design a content provider around it.

will comprise your system. L .
. Think about the fransitions Vl\\l/%vlrc;%nnr%gc.t. the Activities, services, etc...

between the screens, these will be

K}iﬂgg 8 passed between the * Don’t forget good OOP © and

 USE THE DEVELOPER DOCs &
GUIDES (next few slides)

Hl‘m'\ Developers Design ~ Develop Distribute B> Developer Console
1]

7~

Training AP Guides Reference Tools Google Services Samples)
.

Get Started with
Android Studio

Everything you need to build incredible app experiences on
phones and tablets, Wear, TV, and Auto.

> Set up Android Studio
> Build your first app

> Learn about Android

> Sample projects

Latest

O, Enable Instant Run| Build, Exec

- %
I‘l Developers Design Develop

API Guides Reference Tools

Getting Started

Building Your First App

Supporting Different Devices

Managing the Activity Lifecycle

Building a Dynamic Ul with
Fragments

Saving Data

Interacting with Other Apps

Working with System
Permissions

Building Apps with
Content Sharing

Building Apps with
Multimedia

Building Apps with
Graphics & Animation

Building Apps with

et O $lam Nlaced

<

<

Distribute B Developer Console

Google Services Samples

Getting Started

Welcome to Training for Android developers. Here you'll find sets of lessons within classes that
describe how to accomplish a specific task with code samples you can re-use in your app. Classes
are organized into several groups you can see at the top-level of the left navigation.

This first group, Getting Started, teaches you the bare essentials for Android app development. If you're a new

Android app developer, you should complete each of these classes in order.

If you prefer to learn through interactive video training, " .
o Developing Android Apps @
check out this trailer for a course about the 1

fundamentals of Android development. PR\ NN 2 /‘Q
\
START THE VIDEO COURSE

Online video courses

If you prefer to learn through interactive video training, check out these free courses.

N

Design

P
l | Developers

Develop

Distribute

Training API Guides Reference Tools Google Services Samples

Introduction

A

App Fundamentals

Device Compatibility

System Permissions

App Components

App Resources

App Manifest

User Interface

Animation and Graphics

Computation

Media and Camera

Location and Sensors

Connectivity

Text and Input

v

B Developer Console

Introduction to Android

Android provides a rich application framework that allows you to build
innovative apps and games for mobile devices in a Java language

environment. The documents listed in the left navigation provide details

about how to build apps using Android's various APIs.

To learn how apps work, start with
App Fundamentals.

To begin coding right away, read
Building Your First App.

If you're new to Android development, it's important that you understand the following fundamental concepts

about the Android app framework:

Apps provide multiple entry points

Android apps are built as a combination of distinct
components that can be invoked individually. For
instance, an individual activity provides a single screen
for a user interface, and a service independently

performs work in the background.

From one component you can start another
component using an intent. You can even start a
component in a different app, such as an activity in a
maps app to show an address. This model provides
multiple entry points for a single app and allows any
app to behave as a user's "default” for an action that

other apps may invoke.

Open “developer.android.com/guide/index.html” in a new tab behind the current one

Apps adapt to different devices

Android provides an adaptive app framework that
allows you to provide unique resources for different
device configurations. For example, you can create
different XML layout files for different screen sizes and
the system determines which layout to apply based on

the current device's screen size.

You can query the availability of device features at
runtime if any app features require specific hardware
such as a camera. If necessary, you can also declare
features your app requires so app markets such as
Google Play Store do not allow installation on devices

that do not support that feature.

Learn more:

Q

s
l'l Developers Design Develop

Training API Guides Reference Tools

Introduction

App Components A

Intents and Intent Filters

Processes and Threads

App Resources

App Manifest

User Interface

Animation and Graphics

Computation

Media and Camera

Activities v
Services v
Content Providers v
App Widgets

Distribute

Google Services Samples

BLOG ARTICLES

Using DialogFragments

In this post, I'll show how to use DialogFragments
with the v4 support library (for backward
compatibility on pre-Honeycomb devices) to show a
simple edit dialog and return a result to the calling

Activity using an interface.

Fragments For All

Todav we've released a static librarv that exposes the

B Developer Console

ApPP
Components

Android's application framework lets you create rich
and innovative apps using a set of reusable
components. This section explains how you can
build the components that define the building blocks
of your app and how to connect them together using

intents.

INTENTS AND INTENT FILTERS

TRAINING

Managing the Activity Lifecycle

This class explains important lifecycle callback
methods that each Activity instance receives and
how you can use them so your activity does what the
user expects and does not consume system

resources when your activity doesn't need them.

Building a Dynamic Ul with Fragments

This class shows vou how to create a dvnamic user

Q

s
l'l Developers Design Develop Distribute

Training API Guides Reference Tools Google Services Samples

Introduction v /”ﬁ
App Components v h
i i | s —
— ——
EE I .
App Resources v 2 ~—p——
— — S—
l g —————— g
App Manifest v # { —— g e E
& — 7-:___
. [\ e [pm— E
User Interface A — —
T .
Overview w
Layouts v
Input Controls v
BLOG ARTICLES

Input Events

Say Goodbye to the Menu Button

Menus As Ice Cream Sandwich rolls out to more devices, it's
important that you begin to migrate your designs to
Settings the action bar in order to promote a consistent
Android user experience.
Dialogs
New Layout Widgets: Space and
Notifications GridLayout
Toasts Ice Cream Sandwich (ICS) sports two new widgets

Open “developer.android.com/guide/topics/ui/index.html” in a new tab behind the current one 1to support the richer user

B Developer Console

User Interface

Your app's user interface is everything that the user
can see and interact with. Android provides a variety
of pre-built Ul components such as structured layout
objects and Ul controls that allow you to build the
graphical user interface for your app. Android also
provides other Ul modules for special interfaces

such as dialogs, notifications, and menus.

OVERVIEW >

TRAINING

Implementing Effective Navigation

This class shows you how to plan out the high-level
screen hierarchy for your application and then
choose appropriate forms of navigation to allow
users to effectively and intuitively traverse your
content.

Designing for Multiple Screens

Android powers hundreds of device types with

several different screen sizes, ranging from small

&5
l‘l Developers Design

Training API Guides Reference Tools

Introduction

App Components

App Resources

App Manifest

User Interface

Overview

Layouts

Input Controls

Develop

ﬂjttons

Text Fields
Checkboxes
Radio Buttons
Toggle Buttons
Spinners

Pickers

Open "developer.androidw

“html” in a new tab behind the current one

~

Distribute

Google Services Samples

Input Controls

Input controls are the interactive components in your

app's user interface. Android provides a wide variety of Button
controls you can use in your Ul, such as buttons, text

fields, seek bars, checkboxes, zoom buttons, toggle Text field |
buttons, and many more. L -

Adding an input control to your Ul is as simple as

adding an XML element to your XML layout. For ——

example, here's a layout with a text field and button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:orientation="horizontal">
<EditText android:id="@+id/edit_message"
android:layout_weight="1"
android:layout_width="@dp"
android:layout_height="wrap_content"
android:hint="@string/edit_message" />
<Button android:id="@+id/button_send"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send"
android:onClick="sendMessage" />
</LinearLayout>

B Developer Console

«q O

OFF

®

Q

Common Controls
P e

Button A push-button that can be pressed, or clicked, by the user to Button

perform an action.

Text field An editable text field. You can use the EditText ,
AutoCompleteTextView widget to create a text entry widget AutoCompleteTextView

that provides auto-complete suggestions

Checkbox An on/off switch that can be toggled by the user. You should CheckBox
use checkboxes when presenting users with a group of
selectable options that are not mutually exclusive.

Radio button Similar to checkboxes, except that only one option can be RadioGroup
selected in the group. RadioButton
Toggle button | An on/off button with a light indicator. ToggleButton
Spinner A drop-down list that allows users to select one value from a Spinner
set.

Pickers A dialog for users to select a single value for a set by using DatePicker ,
_/ up/down buttons or via a swipe gesture. Use a \TimePicker‘ /

DatePicker code> widget to enter the values for the date

(month, day, year) or a TimePicker widget to enter the
values for a time (hour, minute, AM/PM), which will be

formatted automatically for the user's locale.

Android Anatomy

p- -9
l‘l Developers Design Develop

Training API Guides Reference Tools

Introduction v
App Components v

App Resources

App Manifest v
User Interface A
Overview
Layouts v
Input Controls A
Buttons
Text Fields
Checkboxes

Radio Buttons
Toggle Buttons
Spinners

Pickers

Open “developer.android.com/guide/topics/ui/controls/button.html” in a new tab behind the current one

Distribute

Google Services Samples

Buttons

A button consists of text or an icon (or both text and an
icon) that communicates what action occurs when the user
touches it.

Alarm © (© Alarm

Depending on whether you want a button with text, an icon, or both,

you can create the button in your layout in three ways:

e With text, using the Button class:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:text="@string/button_text"
coo [/

e With anicon, using the ImageButton class:

<ImageButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/button_icon"

.. />

B Developer Console

In this document

> Responding to Click Events
> Using an OnClickListener
> Styling Your Button
> Borderless button

> Custom background

Key classes
> Button

> ImageButton

Button class with the android:drawableLeft attribute:

Q

Il Developers Design Develop Distribute B Developer Console

[])

|
| Training API Guides Reference Tools Google Services Samples
|

(Text Fields

App Components

A text field allows the user to type text into your app. It can

; App Resources be either single line or multi-line. Touching a text field places In this document
| the cursor and automatically displays the keyboard. In > Specifying the Keyboard Type
App Manifest addition to typing, text fields allow for a variety of other » Controlling other behaviors
activities, such as text selection (cut, copy, paste) and data > Specifying Keyboard Actions
L look-up via auto-completion. > Responding to action button
events
Overview You can add a text field to you layout with the EditText object. You > Setting a custom action
button label

should usually do so in your XML layout with a <EditText> element.
Layouts > Adding Other Keyboard Flags

> Providing Auto-complete
Suggestions

(™ Compose

Input Controls

Buttons Key classes
Text Fields > EditText

> AutoCompleteTextView
Checkboxes

Radio Buttons

‘ Toggle Buttons

Spinners
Pick g
chers Specifying the Keyboard Type
‘\ Open “developer.android.com/guide/topics/ui/controls/text.html” in a new tab behind the current one , .t types such as number, —

Developers Design Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

(Checkboxes |

App Components

Checkboxes allow the user to select one or more options

App Resources from a set. Typically, you should present each checkbox In this document
option in a vertical list. > Responding to Click Events
App Manifest
Sync Browser Key classes
User Interface y 3 ; 232
4 > CheckBox

Overview Sync Calendar

Layouts

Sync Contacts

Input Controls

To create each checkbox option, create a CheckBox in your layout. Because a set of checkbox options allows

Buttons
the user to select multiple items, each checkbox is managed separately and you must register a click listener for
Text Fields
each one.
Checkboxes
Radio Buttons Responding to Click Events

Toggle Buttons)))
When the user selects a checkbox, the CheckBox object receives an on-click event.

Spinners
To define the click event handler for a checkbox, add the android:onClick attribute to the <CheckBox>

Pickers element in your XML layout. The value for this attribute must be the name of the method you want to call in

response to a click event. The Activity hosting the layout must then implement the corresponding method.
Open “developer.android.com/guide/topics/ui/controls/checkbox.html” in a new tab behind the current one

m . . .
l'l Developers Design Develop Distribute B Developer Console Q

Training API Guides Reference Tools Google Services Samples

Introduction - R a d | O B U tt O n S

App Components v
Radio buttons allow the user to select one option from a set.
App Resources v You should use radio buttons for optional sets that are In this document
mutually exclusive if you think that the user needs to see all > Responding to Click Events
App Manifest v available options side-by-side. If it's not necessary to show
all options side-by-side, use a spinner instead. Key classes
User Interface A
> RadioButton
ATTENDING?)
Overview > RadioGroup
TRy s
@® Yes (O Maybe ONo
Layouts v
Input Controls - To create each radio button option, create a RadioButton in your layout. However, because radio buttons are
mutually exclusive, you must group them together inside a RadioGroup . By grouping them together, the system
Buttons ensures that only one radio button can be selected at a time.
Text Fields
Checkboxes Responding to Click Events

Radio Buttons

When the user selects one of the radio buttons, the corresponding RadioButton object receives an on-click
Toggle Buttons event.

Sl To define the click event handler for a button, add the android:onClick attribute to the <RadioButton>

Pickers element in your XML layout. The value for this attribute must be the name of the method you want to call in
response to a click event. The Activity hosting the layout must then implement the corresponding method.

Open “developer.android.com/guide/topics/ui/controls/radiobutton.html” in a new tab behind the current one

L N sidtan ARianta:

i
0! Developers Design

Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

Introduction

App Components

App Resources

App Manifest

User Interface

Overview

Layouts

Input Controls

Buttons
Text Fields
Checkboxes

Radio Buttons

Toggle Buttons

A toggle button allows the user to change a setting between
two states. In this document

> Responding to Button Presses
You can add a basic toggle button to your layout with the

ToggleButton object. Android 4.0 (API level 14) introduces another Key classes

A kind of toggle button called a switch that provides a slider control,
_ . , > ToggleButton
which you can add with a Switch object.

> Switch
If you need to change a button's state yourself, you can use the > CompoundButton
CompoundButton.setChecked() or CompoundButton.toggle()

methods.

R pron A on |

Toggle buttons Switches (in Android 4.0+)

Responding to Button Presses

Toggle Buttons

To detect when the user activates the button or switch, create an CompoundButton.0OnCheckedChangelListener

Spinners

Pickers

Input Events

object and assign it to the button by calling setOnCheckedChangeListener() . For example:

ToggleButton toggle = (ToggleButton) findvViewById(R.id.togglebutton);
toggle.setOnCheckedChangeListener(new CompoundButton.OnCheckedChangeListener() {
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
if (isChecked) {

Q

m . . .
I'I Developers Design Develop Distribute B Developer Console Q

Training API Guides Reference Tools Google Services Samples

Introduction

<

Spinners

App Components v
Spinners provide a quick way to select one value from a set.
App Resources v In the default state, a spinner shows its currently selected In this document
value. Touching the spinner displays a dropdown menu with > Populate the Spinner with User
App Manifest v | all other available values, from which the user can select a Choices
new one. > Responding to User Selections
User Interface A
V@ i H Key classes
. a malti.com ome
Overview Jay@g A > Spinner
Home > SpinnerAdapter
Layouts v
> AdapterView.OnItemSelectedListener
Input Controls A Work
Buttons Oth er
Text Fields
Checkboxes Custom
Radio Buttons
Toggle Buttons You can add a spinner to your layout with the Spinner object. You should usually do so in your XML layout with
Spi a <Spinner> element. For example:
pinners
Pickers <Spinner

android:id="@+id/planets_spinner"

Open “developer.android.com/guide/topics/ui/controls/spinner.html” in a new tab berhind the current one Lo

M. -an rantant+t?" /s

Hﬁﬂ Developers Design Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

Introduction

App Components

App Resources

App Manifest

User Interface

[Pickers

Android provides controls for the user to pick a time or pick
a date as ready-to-use dialogs. Each picker provides controls
for selecting each part of the time (hour, minute, AM/PM) or
date (month, day, year). Using these pickers helps ensure
that your users can pick a time or date that is valid,
formatted correctly, and adjusted to the user's locale.

In this document

> Creating a Time Picker

> Extending DialogFragment
for a time picker

> Showing the time picker
> Creating a Date Picker

Overview > Extending DialogFragment
for a date picker
Layouts > Showing the date picker

Input Controls

Key classes

> DatePickerDialog

Buttons

> TimePickerDialog
Text Fields .

> DialogFragment
Checkboxes

Radio Buttons
Toggle Buttons

Spinners

Pickers

We recommend that you use DialogFragment to hosteach time or
date picker. The DialogFragment manages the dialog lifecycle for
you and allows you to display the pickers in different layout
configurations, such as in a basic dialog on handsets or as an

embedded part of the layout on large screens.

See also

> Fragments

Although DialogFragment was first added to the platform in Android 3.0 (API level 11), if your app supports

versions of Android older than 3.0—even as low as Android 1.6—you can use the DialogFragment class that's

Open “developer.android.com/guide/topics/ui/controls/pickers.html” in a new tab behind the current one

. wanliarard aAarmnatilhilityvg

Progress bars

Progress bars are for situations where the percentage completed can be determined. They give users a quick sense of how
much longer an operation will take.

(google calendar X

Google Calendar

1 GOOGLE INC. ¢
3 (220KB/2.64MB

A progress bar should always fill from 0% to 100% and never move backwards to a lower value. If multiple operations are
happening in sequence, use the progress bar to represent the delay as a whole, so that when the bar reaches 100%, it
doesn't return back to 0%.

=

4 : daveydrohan@gmail.com :
\) Google Developers O\ Google Maps Android API 0 Search Change account | Sign out "

@ Google Maps Android API

Add Google Maps to your Android app.

GET A KEY VIEW PRICING AND PLANS

HOME GUIDES REFERENCE SAMPLES SUPPORT SEND FEEDBACK

The best of Google Maps for every Android app

Build a custom map for your Android app using 3D buildings, indoor floor
plans and more.

¥ 41 500

FINANCIAL
DISTRICT

' Embarcadero

Sydney
King sy
)

@& Queen Victoria Building

Maps Imagery Customization

Case Study

1 Donation — an Android App to keep track of
donations made to ‘Homers Presidential
Campaign .

J App Features

- Accept donation via number picker
or typed amount

- Keep a running total of donations

- Display report on donation amounts
and types

- Display running total on progress
bar

Summary

J We looked at the Android Application Components
J Became aware of The Android Application Life Cycle
1 Viewed the Online Developer Resources

J Took a very brief look at The “Donation” Case Study

Questions?

Android Anatomy 35

Appendix

Major Android
Components

Broadcast Y

Receiver Content

Provider

Android Anatomy

Activities

Activities manage (control) individual
screens (views) with which a user could
be interacting.

Your program specifies a top level screen
that runs upon application startup.

Each Activity performs its own actions, to
execute a method in, or launch, another

Activity you use an Intent.

The Activity base class already provides
you with enough functionality to have a

screen which “does nothing” - Provides
you with an empty canvas...

The activity allows you to set the top level
GUI container.

Then you instantiate some Views
(widgets), put them in a container
View (your layout), and set the
container as the Activity’s top level
View:

setContentView (View)

This is what gets displayed on the
screen when the Activity is running.

We won’t go too in depth on GUI
programming here, lots of
documentation.

The Activity is loaded by the Android
OS, then the appropriate methods are

called based on user interaction (back
button?)

Views

- The View class is the basic User Interface (Ul)
building block within Android and serves as the

base class for nearly all the widgets and layouts)
within the SDK.

g e CoffeeMate | wvo-
The Ul of an Activity (or a Fragment) is built with -
widgets classes (Button, TextView, EditText, etc) Home
which inherent from "android.view.View". Add a Coffee
Layout of the views is managed by € ot 5 . Search
"androj_d .view.Vi ewGroupS " . '\- . “'7 i ’ " View Favourites

Take a Photo

ommunicate & Locate

Share

View on Map

User starts your Intent object to start %
Intents app... ViewAlIMyStuff

« How does an Activity (or any other onRestart() onCreate()
runnable Android object) get K
started”? —
We use the Intent class to ask the ViewAllIMyStuff Running
Android OS to start some Activity,

Service, etc...

* Then the OS schedules that Activity
to run, and that Activity has its
onCreate (or onResume, etc...) Intent object to start
method called. ViewSomeStuff

* |Intents are used to represent most
inter-process requests in Android:

Dialing a number
Sending a text

T User clicks on
some ‘stuff'to view

onCreate()

Starting a new Activity within your ViewSomeStuff User clicks back
application running button
* So the system will generate Intents,
I ice! Her ransitions ar vents initi ndroid OS,
and SO WI” your appl plotice I_;encey’ ;Z: ;ig;natrzgsgtizniZrtgireeaetegs byt)/ezpti? at;J};JTce‘a/tLi\or? o

Android Anatomy

Services

Services provide a way for your
application to handle events in the
background, without being
explicitly associated with a View.

However, services don’t reside in
their own thread

So don’t perform things like
network connections in a
service, you will block the main
thread

What can you do?

Use your Service class to
provide an interface to a
background thread

Can call back to main activity
using a Handler class

AsyncTask class

User Selects something to download

onButtonClick() called in currently

running activity

e

Activity asks Service to
download specific item
(possibly via an intent)

(new WorkerThread()).start()

“one downloading

New worker

thread

Worker Thread

(downloading)

Android Anatom-yA W

Content Providers

J A component that stores and retrieves data and make it

accessible to all applications.
uses a standard interface (URI) to fulfill requests for data from other applications &

It’s the only way to share data across applications.
¢ android.provider.Contacts.Phones.CONTENT URI

Android ships with a number of content providers for common data types (audio,
video, images, personal contact information, and so on) - SQLite DB

Android 4.0 introduces the Calendar Provider.
¢ Calendars.CONTENT URI;

SQLite - Persistence

« Eventually you'll want to be able to store data
beyond the lifetime of your app.

You can use the SharedPreferences class to store
simple key-value pairs

Simple interface, call getSharedPreferences and then
use call getString, getBoolean, etc...
 However, you'll probably want to use more
complicated storage.

Android provides a Bundle class to share complex
objects

And ContentProviders provide inter process data
storage

The best solution is to use the Android
interface to SQLite:

Lightweight database based on SQL

Fairly powerful, can’t notice the
difference between SQLite and SQL
unless you have a large database

You make queries to the database in
standard SQL:

“‘SELECT ID, CITY, STATE FROM
STATION WHERE LAT_N > 51.7;”

Then your application provides a handler
to interface the SQL database to other
applications via a content provider:

Broadcast Receilvers

d A component designed to respond to broadcast Intents.

Receives system wide messages and implicit intents
can be used to react to changed conditions in the system (external notifications or

alarms).
An application can register as a broadcast receiver for certain events and can be
started if such an event occurs. These events can come from Android itself (e.g.,

battery low) or from any program running on the system.
d An Activity or Service provides other applications with access to its
functionality by executing an Intent Receiver, a small piece of code
that responds to requests for data or services from other activities.

The Layered Framework

slides paraphrase a blog post by Tim Bray (co-inventor of XML and currently

employed by Google to work on Android)
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is

Android Anatomy

The Layered Framework (1)
J Applications Layer

m Android provides a set of core applications:
v Email Client

v SMS Program

v Calendar

v Maps

v Browser

v Contacts

v YOUR APP

v Etc

m All applications are written using the Java language. These applications are executed by the
Dalvik Virtual Machine (DVM), similar to a Java Virtual Machine but with different bytecodes)

The Layered Framework (2)

J Application Framework Layer

APPLICATION FRAMEWIORK

fovm ot ol e Window Content View Notification
Y g Manager Providers System Manager

Telephony Resource Location GTalk Service

Package Manager Manager Manager Manager

m Enabling and simplifying the reuse of components
¢ Developers have full access to the same framework APIs used by the core applications.
¢ Users are allowed to replace components.

- These services are used by developers to create Android applications that can be run in

the emulator or on a device

- See next slide for more.....

The Layered Framework (3)

J Application Framework Layer Features

Feature) Role)
View Used to build an application, including lists, grids, text

System) boxes, buttons, and embedded web browser)
Content Enabling applications to access data from other
Provider) applications or to share their own data)
Resource Providing access to non-code resources (localized strings, graphics, and layout
Manager) files))

Notification Enabling all applications to display custom alerts in the
Manager) status bar)
Activity Managing the lifecycle of applications and providing
Manager) a common navigation (back) stack)

We'll be covering the above in more detail later on...

@

System C library/libc - a BSD (Berkeley Software Distribution) -derived implementation

D I_I brarleS Layer of the standard C system library (libc), tuned for embedded Linux-based devices

Media Framework/Libraries - based on PacketVideo's OpenCORE; the libraries
support playback and recording of many popular audio and video formats, as well
Surface Manager Media SOlLite as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

Framework

The Layered Framework (4)

LIBRARIES

Surface Manager - manages access to the display subsystem and seamlessly
composites 2D and 3D graphic layers from multiple applications

OpenGL | ES FreeType WebKit

>or L WebKit/LibWebCore - a modern web browser engine which powers both the

Android browser and an embeddable web view

,)) SGL (Scene Graph Library) - the underlying 2D graphics engine
m Including a set of C/C++ libraries used by

3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

Components Of the Android SyStem either hardware 3D acceleration (where available) or the included, highly optimized
. 3D soft teri h ->pixel
m Exposed to developers through the Android software rasterizer (shapes->pixels)
app”cation framework FreeType - bitmap and vector font rendering

SQLite - a powerful and lightweight relational database engine available to all
applications

=

The Layered Framework (5))

J Core Runtime Libraries ANDROID RUNTIME

(changing to ART in Kit Kat) ext Slide

m Providing most of the functionality available in the core libraries of the Java language
APls
= Data Structures
= Utilities
= File Access
= Network Access
= Graphics
= FEtc

Android Anatomy 50

The Layered Framework (6))
 Dalvik Virtual Machine (DVM)

Provides an environment on which every Android application runs
Each Android application runs in its own process, with its own instance of the Dalvik VM.,
Dalvik has been written such that a device can run multiple VMs efficiently.

J Android Runtime (ART) 4.4
(see slide 12)

The Layered Framework (7))
 Dalvik Virtual Machine (Cont’d)

v Executing the Dalvik Executable (.dex) format
» .dex format is optimized for minimal memory footprint.
» Compilation

Java = «lass = dex
Java Compiler cdx

v Relying on the Linux Kernel for:
» Threading
» Low-level memory management

)

Android Anatomy

ART = Android Runtime G,

d Handles app execution in a fundamentally different way from Dalvik.

A Current runtime relies on a JIT compiler to interpret original bytecode
In a manner of speaking, apps are only partially compiled by developers

resulting code must go through an interpreter on a user's device each and every time it is run == Overhead
+ Inefficient

But the mechanism makes it easy for apps to run on a variety of hardware and architectures.
d ART pre-compiles that bytecode into machine language when apps are first installed,
turning them into truly native apps.
This process is called Ahead-Of-Time (AOT) compilation.

By removing the need to spin up a new VM or run interpreted code, startup times can be
cut down immensely and ongoing execution will become faster.

The Layered Framework (8)

 Linux Kernel Layer

LiINUX KERNEL

Display

Bluetooth Flash Memory Binder (IPC)
Driver

Camera Driver Daver Driver Driver

Audio Power
USB Driver Keypad Driver WiFi Driver Drti‘velrs Mana;n:ent

At the bottom is the Linux kernel that has been augmented with extensions for Android
the extensions deal with power-savings, essentially adapting the Linux kernel to run on mobile devices
d Relying on Linux Kernel 2.6 for core system services / 3.8 in Kit Kat
Memory and Process Management
Network Stack

Driver Model
Security

d Providing an abstraction layer between the H/W and the rest of the S/\W stack

The Application/Activity
Lifecycle

The Activity Life Cycle o

An activity monitors and reacts to these events by instantiating methods
that override the Activity class methods for each event:

JdonCreate
. Called when an activity is first created. This is the place you
normally create your views, open any persistent data files your
activity needs to use, and in general initialize your activity.
- When calling onCreate(), the Android framework is passed a
Bundle object that contains any activity state saved from when
the activity ran before.

The Activity Life Cycle o
donStart

- (Called just before an activity becomes visible on the screen.
Once onStart() completes, if your activity can become the
foreground activity on the screen, control will transfer to
onResume).

- If the activity cannot become the foreground activity for some
reason, control transfers to the onStop() method.

The Activity Life Cycle

JdonResume

- Called right after onStart() if your activity is the foreground
activity on the screen. At this point your activity is running and
interacting with the user. You are receiving keyboard and touch
iInputs, and the screen is displaying your user interface.

- onResume() is also called if your activity loses the foreground to
another activity, and that activity eventually exits, popping your
activity back to the foreground. This is where your activity
would start (or resume) doing things that are needed to update
the user interface.

The Activity Life Cycle o

JdonPause

- Called when Android is just about to resume a different activity,
giving that activity the foreground. At this point your activity will
no longer have access to the screen, so you should stop doing
things that consume battery and CPU cycles unnecessarily.

¢ If you are running an animation, no one is going to be able to see it, so you
might as well suspend it until you get the screen back. Your activity needs to
take advantage of this method to store any state that you will need in case

your activity gains the foreground again—and it is not guaranteed that your
activity will resume.

- Once you exit this method, Android may kill your activity at any
time without returning control to you.

The Activity Life Cycle o

d onStop

- Called when your activity is no longer visible, either because another
activity has taken the foreground or because your activity Is being
destroyed.

d onDestroy

- The last chance for your activity to do any processing before it is
destroyed. Normally you'd get to this point because the activity is
done and the framework called its finish method. But as mentioned
earlier, the method might be called because Android has decided it
needs the resources your activity is consuming.

