
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Anatomy

Android Anatomy
 2!

Agenda

❑ Overview of Android Application Components

❑ The Android Application Life Cycle

❑ The Online Developer Resources

❑ The “Donation” Case Study – a first (very brief!) look…

Android Anatomy
 3!

Android App Components

❑  App components are the essential building blocks of an Android

app. Each component is a different point through which the
system can enter your app.

❑ Not all components are actual entry points for the user and some
depend on each other, but each one exists as its own entity and
plays a specific role—each one is a unique building block that
helps define your app's overall behavior.

❑  There are four different types of app components. Each type
serves a distinct purpose and has a distinct lifecycle that defines
how the component is created and destroyed.

❑ We’ll briefly mention a few other components (of sorts) that also
make up your App.

4!Android Anatomy

Android App Components

1.  Activities

■  represents a single screen with a user interface

■  acts as the ‘controller’ for everything the user sees on its associated screen

■  implemented as a subclass of Activity

■  e.g. email app (listing your emails)

2.  Services

■  a component that runs in the background to perform long-running operations or

to perform work for remote processes

■  does not provide a user interface

■  can be started by an activity

■  is implemented as a subclass of Service

■  e.g. music player (playing in background)

 5!Android Anatomy

Android App Components

6!Android Anatomy

3.  Content Providers

■  manages a shared set of app data

■  can store the data in the file system, an SQLite database, on the web, or any

other persistent storage location your app can access

■  through the content provider, other apps can query or even modify the data

■  e.g. Users Contacts (your app could update contact details)

4.  Broadcast Receivers

■  a component that responds to system-wide broadcast announcements

■  broadcasts can be from both the system and your app

■  implemented as a subclass of BroadcastReceiver and each broadcast is

delivered as an Intent object

■  e.g. battery low (system) or new email (app via notification)

 How it all Fits Together *

•  Based on the Model View Controller

design pattern.

•  Don’t think of your program as a linear

execution model:

•  Think of your program as existing in

logical blocks, each of which performs
some actions.

•  The blocks communicate back and forth
via message passing (Intents)

•  Added advantage, physical user
interaction (screen clicks) and inter
process interaction can have the same
programming interface

•  Also the OS can bring different pieces of
the app to life depending on memory
needs and program use

•  For each distinct logical piece of program
behavior you’ll write a Java class (derived
from a base class).

•  Activities/Fragments: Things the user
can see on the screen. Basically, the
‘controller’ for each different screen in
your program.

•  Services: Code that isn’t associated
with a screen (background stuff, fairly
common)

•  Content providers: Provides an
interface to exchange data between
programs (usually SQL based)

•  You’ll also design your layouts (screens),
with various types of widgets (Views),
which is what the user sees via Activities &
Fragments

Android Anatomy
 7!

See the Appendix for a more detailed !
explanation of these components!

The (Application) Activity Life Cycle *

❑ Android is designed around the unique requirements of

mobile applications.

■  In particular, Android recognizes that resources (memory and battery, for

example) are limited on most mobile devices, and provides mechanisms to
conserve those resources.

❑ The mechanisms are evident in the Android Activity
Lifecycle, which defines the states or events that an
activity goes through from the time it is created until it
finishes running.

See the Appendix for a more detailed explanation of these ‘states’!

The (Application) Activity Life Cycle

❑ An application itself is a set of activities with a Linux process

to contain them

■  However, an application DOES NOT EQUAL a process

■  Due to (the previously mentioned) low memory conditions,

an activity might be suspended at any time and its process
be discarded

⬥ The activity manager remembers the state of the activity

however and can reactivate it at any time

⬥ Thus, an activity may span multiple processes over the

life time of an application

Android Anatomy
 9!

The Activity Life Cycle *

•  The Activity has a number of

predefined functions that you
override to handle events from
the system.

•  If you don’t specify what should
be done the system will perform
the default actions to handle
events.

•  Why would you want to handle
events such as onPause(),
etc… ?

•  You will probably want to do

things like release resources,
stop network connections,
back up data, etc…

Android Anatomy
 10!

The Activity Life Cycle

Android Anatomy
 11!

❑ At the very minimum ,you
need (and is supplied)
onCreate()

❑ onStop() and
onDestroy() are
optional and may never
be called

❑ If you need persistence,
the save needs to
happen in onPause()

LifeCycle
Example (1) *

12!Android Anatomy

User Launches App

13!Android Anatomy

User Selects ‘Home’

LifeCycle
Example (2) *

14!Android Anatomy

User restarts App

LifeCycle
Example (3) *

15!Android Anatomy

User Selects ‘Back’

LifeCycle
Example (4) *

So, after all that, how do I Design my App?

•  The way the system architecture is

set up is fairly open:

•  App design is somewhat up to

you, but you still have to live with
the Android execution model.

•  Start with the different screens/
layouts (Views) that the user will
see. These are controlled by the
different Activities (Controllers) that
will comprise your system.

•  Think about the transitions
between the screens, these will be
the Intents passed between the
Activities.

•  Think about what background services you
might need to incorporate.

•  Exchanging data

•  Listening for connections?

•  Periodically downloading network

information from a server?

•  Think about what information must be

stored in long term memory (SQLite) and
possibly design a content provider around it.

•  Now connect the Activities, services, etc…
with Intents…

•  Don’t forget good OOP J and"

•  USE THE DEVELOPER DOCs &
GUIDES (next few slides)

Android Anatomy
 16!

Android Anatomy
 17!

Android Anatomy
 18!

Android Anatomy
 19!

Android Anatomy
 20!

Android Anatomy
 21!

22!Android Anatomy

Common Controls

Android Anatomy
 23!

Buttons

Android Anatomy
 24!

TextFields (EditTexts & TextViews)

Android Anatomy
 25!

26!Android Anatomy

RadioGroup / RadioButtons

Android Anatomy
 27!

28!Android Anatomy

29!Android Anatomy

Pickers

Android Anatomy
 30!

Progress Bars

Android Anatomy
 31!

32!Android Anatomy

Case Study!

33!

❑ Donation – an Android App to keep track of
donations made to ‘Homers Presidential
Campaign ’.

❑ App Features

■  Accept donation via number picker "

or typed amount

■  Keep a running total of donations

■  Display report on donation amounts"

and types

■  Display running total on progress "

bar

Android Anatomy

Summary

❑ We looked at the Android Application Components

❑ Became aware of The Android Application Life Cycle

❑ Viewed the Online Developer Resources

❑ Took a very brief look at The “Donation” Case Study

Android Anatomy
 34!

Questions? !

Android Anatomy
 35!

Appendix!

Android Anatomy
 36!

Major Android "
Components

Android Anatomy
 37!

Activities

•  Activities manage (control) individual

screens (views) with which a user could
be interacting.

•  Your program specifies a top level screen
that runs upon application startup.

•  Each Activity performs its own actions, to
execute a method in, or launch, another
Activity you use an Intent.

•  The Activity base class already provides
you with enough functionality to have a
screen which “does nothing” - Provides
you with an empty canvas…

•  The activity allows you to set the top level
GUI container.

•  Then you instantiate some Views
(widgets), put them in a container
View (your layout), and set the
container as the Activity’s top level
View:

•  setContentView(View)

•  This is what gets displayed on the

screen when the Activity is running.

•  We won’t go too in depth on GUI

programming here, lots of
documentation.

•  The Activity is loaded by the Android
OS, then the appropriate methods are
called based on user interaction (back
button?)

Android Anatomy
 38!

Views

■  The View class is the basic User Interface (UI)

building block within Android and serves as the
base class for nearly all the widgets and layouts
within the SDK.

■  The UI of an Activity (or a Fragment) is built with
widgets classes (Button, TextView, EditText, etc)
which inherent from "android.view.View".

■  Layout of the views is managed by
"android.view.ViewGroups".

Android Anatomy
 39!

Intents

•  How does an Activity (or any other

runnable Android object) get
started?

•  We use the Intent class to ask the
Android OS to start some Activity,
Service, etc…

•  Then the OS schedules that Activity
to run, and that Activity has its
onCreate (or onResume, etc…)
method called.

•  Intents are used to represent most
inter-process requests in Android:

•  Dialing a number

•  Sending a text

•  Starting a new Activity within your

application

•  So the system will generate Intents,

and so will your app!

onCreate()!onRestart()!

ViewAllMyStuff Running!

User clicks on
some ‘stuff’to view!

Intent object to start
ViewSomeStuff!

ViewSomeStuff !
running!

onCreate()!

User clicks back
button!

User starts your
app…!

Intent object to start
ViewAllMyStuff!

Notice! Here the red transitions are the events initiated by the Android OS,
and the green transitions are created by your application!

Android Anatomy
 40!

Services

•  Services provide a way for your

application to handle events in the
background, without being
explicitly associated with a View.

•  However, services don’t reside in
their own thread

•  So don’t perform things like
network connections in a
service, you will block the main
thread

•  What can you do?

•  Use your Service class to

provide an interface to a
background thread

•  Can call back to main activity
using a Handler class

•  AsyncTask class

!
!
!

Downloading Threads (maybe thread pool?)!

Main Activity!

Service!

onButtonClick() called in currently
running activity!

Activity asks Service to
download specific item
(possibly via an intent) !

Worker Thread!
(downloading)!

New worker
thread!

Done downloading!(new WorkerThread()).start()!

User Selects something to download!

Android Anatomy
 41!

Content Providers

42!Android Anatomy

❑ A component that stores and retrieves data and make it
accessible to all applications.

■  uses a standard interface (URI) to fulfill requests for data from other applications &

it’s the only way to share data across applications.

⬥  android.provider.Contacts.Phones.CONTENT_URI
■  Android ships with a number of content providers for common data types (audio,

video, images, personal contact information, and so on) - SQLite DB

■  Android 4.0 introduces the Calendar Provider.

⬥ Calendars.CONTENT_URI;

SQLite - Persistence

•  Eventually you’ll want to be able to store data

beyond the lifetime of your app.

•  You can use the SharedPreferences class to store

simple key-value pairs

•  Simple interface, call getSharedPreferences and then

use call getString, getBoolean, etc…

•  However, you’ll probably want to use more

complicated storage.

•  Android provides a Bundle class to share complex

objects

•  And ContentProviders provide inter process data

storage

•  The best solution is to use the Android
interface to SQLite:

•  Lightweight database based on SQL

•  Fairly powerful, can’t notice the

difference between SQLite and SQL
unless you have a large database

•  You make queries to the database in
standard SQL:

•  “SELECT ID, CITY, STATE FROM
STATION WHERE LAT_N > 51.7;”

•  Then your application provides a handler
to interface the SQL database to other
applications via a content provider:

Android Anatomy
 43!

Broadcast Receivers

❑  A component designed to respond to broadcast Intents.

■  Receives system wide messages and implicit intents

■  can be used to react to changed conditions in the system (external notifications or

alarms).

■  An application can register as a broadcast receiver for certain events and can be

started if such an event occurs. These events can come from Android itself (e.g.,
battery low) or from any program running on the system.

❑  An Activity or Service provides other applications with access to its
functionality by executing an Intent Receiver, a small piece of code
that responds to requests for data or services from other activities.

Android Anatomy
 44!

The Layered Framework!
slides paraphrase a blog post by Tim Bray (co-inventor of XML and currently

employed by Google to work on Android)!
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is!

!

Android Anatomy
 45!

The Layered Framework (1)

❑ Applications Layer

■  Android provides a set of core applications:

ü  Email Client

ü  SMS Program

ü  Calendar

ü  Maps

ü  Browser

ü  Contacts

ü  YOUR APP

ü  Etc

■  All applications are written using the Java language. These applications are executed by the

Dalvik Virtual Machine (DVM), similar to a Java Virtual Machine but with different bytecodes

Android Anatomy
 46!

The Layered Framework (2)

❑ Application Framework Layer

■  Enabling and simplifying the reuse of components

⬥  Developers have full access to the same framework APIs used by the core applications.

⬥  Users are allowed to replace components.

■  These services are used by developers to create Android applications that can be run in
the emulator or on a device

■  See next slide for more…..

Android Anatomy
 47!

The Layered Framework (3)

❑ Application Framework Layer Features

Feature
 Role

View
System

Used to build an application, including lists, grids, text
boxes, buttons, and embedded web browser

Content
Provider

Enabling applications to access data from other
applications or to share their own data

Resource
Manager

Providing access to non-code resources (localized strings, graphics, and layout
files)

Notification
Manager

Enabling all applications to display custom alerts in the
status bar

Activity
Manager

Managing the lifecycle of applications and providing
a common navigation (back) stack

We’ll be covering the above in more detail later on...!

Android Anatomy
 48!

The Layered Framework (4)

❑ Libraries Layer

■  Including a set of C/C++ libraries used by

components of the Android system

■  Exposed to developers through the Android

application framework

System C library/libc - a BSD (Berkeley Software Distribution) -derived implementation
of the standard C system library (libc), tuned for embedded Linux-based devices!

!
Media Framework/Libraries - based on PacketVideo's OpenCORE; the libraries

support playback and recording of many popular audio and video formats, as well
as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG!

!
Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications!
!

WebKit/LibWebCore - a modern web browser engine which powers both the
Android browser and an embeddable web view!

!
SGL (Scene Graph Library) - the underlying 2D graphics engine!

!
3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

either hardware 3D acceleration (where available) or the included, highly optimized
3D software rasterizer (shapes->pixels)!

!
FreeType - bitmap and vector font rendering!

!
SQLite - a powerful and lightweight relational database engine available to all

applications!

Android Anatomy
 49!

The Layered Framework (5)

❑ Core Runtime Libraries"

(changing to ART in Kit Kat)

■  Providing most of the functionality available in the core libraries of the Java language

■  APIs

§  Data Structures

§  Utilities

§  File Access

§  Network Access

§  Graphics

§  Etc

Next Slide!

Android Anatomy
 50!

The Layered Framework (6)

❑ Dalvik Virtual Machine (DVM)

§  Provides an environment on which every Android application runs

§  Each Android application runs in its own process, with its own instance of the Dalvik VM.

§  Dalvik has been written such that a device can run multiple VMs efficiently.

❑  Android Runtime (ART) 4.4 "

(see slide 12)

Android Anatomy
 51!

The Layered Framework (7)

❑ Dalvik Virtual Machine (Cont’d)

ü  Executing the Dalvik Executable (.dex) format

Ø  .dex format is optimized for minimal memory footprint.

Ø  Compilation

ü  Relying on the Linux Kernel for:

Ø  Threading

Ø  Low-level memory management

Android Anatomy
 52!

ART – Android Runtime

❑  Handles app execution in a fundamentally different way from Dalvik.

❑  Current runtime relies on a JIT compiler to interpret original bytecode

■  In a manner of speaking, apps are only partially compiled by developers

■  resulting code must go through an interpreter on a user's device each and every time it is run == Overhead

+ Inefficient

■  But the mechanism makes it easy for apps to run on a variety of hardware and architectures.

❑  ART pre-compiles that bytecode into machine language when apps are first installed,
turning them into truly native apps.

■  This process is called Ahead-Of-Time (AOT) compilation.

❑  By removing the need to spin up a new VM or run interpreted code, startup times can be
cut down immensely and ongoing execution will become faster.

Android Anatomy
 53!

The Layered Framework (8)

❑ Linux Kernel Layer

❑  At the bottom is the Linux kernel that has been augmented with extensions for Android

■  the extensions deal with power-savings, essentially adapting the Linux kernel to run on mobile devices

❑  Relying on Linux Kernel 2.6 for core system services / 3.8 in Kit Kat

■  Memory and Process Management

■  Network Stack

■  Driver Model

■  Security

❑  Providing an abstraction layer between the H/W and the rest of the S/W stack

Android Anatomy
 54!

The Application/Activity!
Lifecycle!

Android Anatomy
 55!

Android Anatomy
 56!

An activity monitors and reacts to these events by instantiating methods
that override the Activity class methods for each event:

❑ onCreate

■  Called when an activity is first created. This is the place you
normally create your views, open any persistent data files your
activity needs to use, and in general initialize your activity.

■  When calling onCreate(), the Android framework is passed a
Bundle object that contains any activity state saved from when
the activity ran before.

The Activity Life Cycle

Android Anatomy
 57!

❑ onStart

■  Called just before an activity becomes visible on the screen.

Once onStart() completes, if your activity can become the
foreground activity on the screen, control will transfer to
onResume().

■  If the activity cannot become the foreground activity for some
reason, control transfers to the onStop() method.

The Activity Life Cycle

Android Anatomy
 58!

❑ onResume

■  Called right after onStart() if your activity is the foreground

activity on the screen. At this point your activity is running and
interacting with the user. You are receiving keyboard and touch
inputs, and the screen is displaying your user interface.

■  onResume() is also called if your activity loses the foreground to
another activity, and that activity eventually exits, popping your
activity back to the foreground. This is where your activity
would start (or resume) doing things that are needed to update
the user interface.

The Activity Life Cycle

Android Anatomy
 59!

❑ onPause

■  Called when Android is just about to resume a different activity,

giving that activity the foreground. At this point your activity will
no longer have access to the screen, so you should stop doing
things that consume battery and CPU cycles unnecessarily.

⬥  If you are running an animation, no one is going to be able to see it, so you

might as well suspend it until you get the screen back. Your activity needs to
take advantage of this method to store any state that you will need in case
your activity gains the foreground again—and it is not guaranteed that your
activity will resume.

■  Once you exit this method, Android may kill your activity at any
time without returning control to you.

The Activity Life Cycle

Android Anatomy
 60!

❑ onStop

■  Called when your activity is no longer visible, either because another

activity has taken the foreground or because your activity is being
destroyed.

❑ onDestroy

■  The last chance for your activity to do any processing before it is

destroyed. Normally you'd get to this point because the activity is
done and the framework called its finish method. But as mentioned
earlier, the method might be called because Android has decided it
needs the resources your activity is consuming.

The Activity Life Cycle

