
Data Structures

David Drohan

02 – Exception Handling

JAVA: An Introduction to Problem Solving & Programming, 6th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Objectives

q Describe the notion of exception handling
q React correctly when certain exceptions occur
q Use Java's exception-handling facilities effectively

in classes and programs
q Create & use custom exceptions

2 02 Exception Handling

What is an Exception?

02 Exception Handling 3

q The term exception is shorthand for the phrase
"exceptional event."

q Definition: An exception is an event, which occurs
during the execution of a program, that disrupts the
normal flow of the program's instructions.

q When an error occurs within a method, the method
creates an object and hands it off to the runtime system.
The object, called an exception object, contains
information about the error, including its type and the
state of the program when the error occurred.

q Creating an exception object and handing it to the runtime
system is called throwing an exception.

What is an Exception?
q After a method throws an exception, the runtime

system attempts to find something to handle it. The
set of possible "somethings" to handle the exception
is the ordered list of methods that had been called to
get to the method where the error occurred. The list
of methods is known as the call stack (see the next
figure).

02 Exception Handling 4

The Call Stack

02 Exception Handling 5

Basic Exception Handling

6 02 Exception Handling

Exceptions in Java

q An exception is an object
n  Signals the occurrence of unusual event during

program execution

q Throwing an exception
n  Creating the exception object

q Handling the exception
n  Code that detects and deals with the exception

7 02 Exception Handling

Exceptions in Java

q Consider a program to assure us of a
sufficient supply of milk

q Possible solution, class GotMilk (next
slide)

Sample
screen
output

8 02 Exception Handling

02 Exception Handling 9

Exceptions in Java

q Now we revise the program to use exception-
handling

q View new version, class ExceptionDemo
Sample
screen

output 1

Sample
screen

output 2

10 02 Exception Handling

02 Exception Handling 11

‘try’ block

‘catch’ block

Exceptions in Java
q Note try block

n  Contains code where something could possibly go
wrong

n  If it does go wrong, we throw an exception

q Note catch block
n  When exception thrown, catch block begins

execution
n  Similar to method with parameter
n  Parameter is the thrown object

12 02 Exception Handling

Predefined Exception Classes

q Java has predefined exception classes within Java
Class Library
n  You can place method invocation in try block
n  You follow with catch block for this type of exception

q Example classes
n  NullPointerException
n  ArrayIndexOutOfBoundsException
n  ClassNotFoundException
n  IOException
n  NoSuchMethodException

13 02 Exception Handling

Predefined Exception Classes

q Example code

14 02 Exception Handling

02 Exception Handling 15

More About Exception Classes

Outline
q Declaring Exceptions (Passing the Buck)
q Kinds of Exceptions
q Errors
q Multiple Throws and Catches
q The finally Block
q Rethrowing an Exception
q Case Study : Custom Exceptions

16 02 Exception Handling

Declaring Exceptions

q Consider a method where its code throws an
exception
n  May want to handle immediately
n  May want to delay until something else is done

q Method that does not catch an exception
n  Notify programmers (users) of your method with

throws clause
n  Programmer then given responsibility to handle

exception

17 02 Exception Handling

Declaring Exceptions

q Note syntax for throws clause

q Note distinction

n  Keyword throw used to throw exception

n  Keyword throws used in method header to
declare an exception

18 02 Exception Handling

Declaring Exceptions

q If a method throws an exception and the
exception is not caught inside the method
n  Method ends immediately after exception thrown

q A throws clause in overriding method
n  Can declare fewer exceptions than declared
n  But not more

q View program example, class DoDivision

19 02 Exception Handling

02 Exception Handling 20

02 Exception Handling 21

02 Exception Handling 22

Kinds of Exceptions

q In most cases, exception is caught either….

n  In a catch block … or

n  Be declared in a throws clause

q But Java has exceptions you do not need to
account for

q Categories of exceptions
n  Checked exceptions
n  Unchecked exceptions

23 02 Exception Handling

Kinds of Exceptions

q Checked exception

n  Must be caught in a catch block

n  Or declared in a throws clause

q Unchecked exception
n  Also called run-time

n  Need not be caught in catch block or declared

in throws

n  However, exceptions that highlight coding
problems should be fixed (obviously…)

24 02 Exception Handling

02 Exception Handling 25

Checked Exceptions
q Exceptions checked by compiler

n  Need to be handled in the code as Compiler gives
a compile error if they are not handled

n  Exceptions are thrown by methods that are used
in the code
w  That’s how Compiler recognizes them

q What happens when exceptions are caught
depends on the exception handling strategy
n  Exception handling code defines how exceptions

are handled

q Examples - The JDBC API & File I/O

02 Exception Handling 26

Unchecked Exceptions

q Exceptions that are thrown by the Java Virtual
Machine
n  Cannot be handled at the compilation as compiler

does not enforce developers to handle exceptions
n  These exceptions occur at the runtime
n  Hard to catch specific unchecked exception as they

are not checked by the compiler
n  Example – Basic I/O, Numbers Vs Text (look at the

Scanner class….), Attempt to use array index out of
bounds, Division by zero

02 Exception Handling 27

Exception Hierarchy…

Throwable

Exception Error

RuntimeException

Unchecked,
thrown by JVM

Checked, enforced
by Compiler

02 Exception Handling 28

…Exception Hierarchy
q Throwable – top of the exception hierarchy in

Java, all exceptions are of this type
q Error – represents serious problems in

program, that usually cannot be recovered
from; thrown by the JVM (see next slide)

q Exception – superclass for all exceptions
including user-defined exceptions

q RuntimeException – also thrown by JVM and
caused by illegal operations

02 Exception Handling 29

Some Common Java Errors
q NoSuchMethodError

n  Application calls method that no longer exist in the class
definition
w  Usually happens if class definition changes at runtime

q NoClassDefFoundError
n  JVM tries to load class and class cannot be found

w  Usually happens if classpath is not set, or class somehow gets
removed from the classpath

q ClassFormatError
n  JVM tries to load class from file that is incorrect

w  Usually happens if class file is corrupted, or if it isn’t class file

Multiple Throws and Catches
q A try block can throw any number of exceptions of

different types
q Each catch block can catch exceptions of only one

type
n  Order of catch blocks matter! – why??

q View example program, class TwoCatchesDemo

30 02 Exception Handling

02 Exception Handling 31

‘try’ block

‘catch’ blocks

‘custom’
exceptions

Multiple Throws and Catches

q Note multiple sample runs

Sample
screen

output 1

Sample
screen

output 2

Sample
screen

output 3

32 02 Exception Handling

Multiple Throws and Catches

q Exceptions can deal with invalid (as apposed
to incorrect) user input

q Use of the throw statement should be
reserved for cases where it is unavoidable

q Convention suggests separate methods for
throwing and catching of exceptions

q Nested try-catch blocks rarely useful

33 02 Exception Handling

The finally Block

q Possible to add a finally block after
sequence of catch blocks

q Code in finally block executed
n  Whether or not execution thrown

n  Whether or not required catch exists

34 02 Exception Handling

02 Exception Handling 35

The finally block
q Executes always at the end after the last catch

block (if one exists)
n  Commonly used for cleaning up resources (closing files,

streams, etc.)
public void myMethod()
{
 try{
 //code that throws exception e1
 //code that throws exception e2
 }
 catch (MyException e1){
 //code that handles exception e1
 }
 catch (Exception e2){
 //code that handles exception e2
 }
 finally{
 //clean up code, close resources
 }
}

02 Exception Handling 36

Defining Your Own Exception Classes

Defining Your Own Exception Classes
q Must be derived class of some predefined

exception class
n  Convention suggests use classes derived from

class Exception

q View sample class
class DivideByZeroException
 and

q View demo program
class DivideByZeroDemo

37 02 Exception Handling

02 Exception Handling 38

Extend from
Exception

Two
constructors

02 Exception Handling 39

02 Exception Handling 40

02 Exception Handling 41

Defining Your Own Exception Classes
q Different runs

of the program Sample
screen

output 1

Sample
screen

output 2

Sample
screen

output 3

42 02 Exception Handling

Defining Your Own Exception Classes
q Note method getMessage defined in

exception classes
n  Returns string passed as argument to constructor
n  If no actual parameter used, default message

returned

q The type of an object is the name of the
exception class

43 02 Exception Handling

Defining Your Own Exception Classes

Guidelines
q Use the Exception as the base class
q Define at least one, but preferably two,

constructors
n  Default, no parameter
n  With String parameter

q Start constructor definition with call to
constructor of base class, using super

q No need to override inherited getMessage

44 02 Exception Handling

02 Exception Handling 45

Graphics Supplement

Graphics Supplement: Outline

q Exceptions in GUIs

q Programming Example: a JFrame GUI
Using Exceptions

46 02 Exception Handling

Exceptions in GUIs

q Not good practice to use throws clauses in
the methods
n  In JFrame GUI or applet, uncaught exception

does not end the program
n  However GUI may not cope correctly, user may

receive sufficient instructions

q Thus most important to handle all checked
exceptions correctly

47 02 Exception Handling

Programming Example

q A JFrame GUI using exceptions
q View GUI class
class ColorDemo

q Note exception class
class UnknownColorException

q View driver program
class ShowColorDemo

48 02 Exception Handling

02 Exception Handling 49

Programming Example

50 02 Exception Handling

Summary
q An exception is an object derived from class
Exception

n  Descendants of class Error behave like exceptions

q Exception handling allows design of normal
cases separate from exceptional situations

q Two kinds of exceptions
n  Checked and unchecked

51 02 Exception Handling

Summary

q Exceptions can be thrown by
n  Java statements
n  Methods from class libraries

n  Programmer use of throw statement

q Method that might throw but not catch an
exception should use throws clause

q Exception is caught in catch block

52 02 Exception Handling

Summary

q A try block followed by one or more catch
blocks

n  More specific exception catch types should
come first

q Every exception type has getMessage
method usable to recover description of
caught description

q Do not overuse exceptions

53 02 Exception Handling

02 Exception Handling 54

Throwable

Exception Error

IOException

ArrayIndexOutOfBoundsException InputMismatchException

NullPointerException

Runtime
Exception AWTError ThreadDeath

ClassCastException

OutOf
MemoryError

ArithmeticException

Portion of Throwable
hierarchy

02 Exception Handling 55

Questions?

