
Inheritance & Polymorphism 1

Inheritance & Polymorphism
Recap

Inheritance & Polymorphism 2

Introduction

! Besides composition, another form of reuse is
inheritance.

! With inheritance, an object can inherit behavior from
another object, thus reusing its code.

! The class inheriting is called a subclass (or derived
class).

! The class inherited from is called a superclass (or
base class).

Inheritance & Polymorphism 3

Inheritance & Polymorphism

! Inheritance is a form of software reusability in which new classes
are created from existing classes by
n  absorbing their attributes and behaviours and
n  enhance these, with capabilities the new classes require.

! Polymorphism
n  enables us to write programs (and methods) in a general

fashion to handle a wide variety of existing and yet-to-be-
specified related classes.

n  makes it easy to add new capabilities to a system.
! Inheritance and Polymorphism are effective techniques for dealing

with software complexity.

Inheritance & Polymorphism 4

Case Study - Point,Circle,Cylinder

! Suppose a set of shape classes such as Circle, Triangle , Square etc.
are all derived from superclass Shape, and each class has the ability to
draw itself (has its own draw() method,which would be different in each
case).

! When drawing a shape, whatever shape it might be, it would be nice to
be able to treat all these shapes generically as objects of the superclass
Shape.

! Then to draw any shape, we could call the draw() method of superclass
Shape and let the program determine dynamically (at run time) which
subclass draw() method should be called (depending on the objects
type).

! To enable this kind of behaviour, we declare draw() in the superclass,
and override draw() in each of the subclasses to draw the appropriate
shape.

Inheritance & Polymorphism 5

The abstract keyword

! An abstract method is not actually implemented in the class.
The body of the method is implemented in subclasses of that
class.

public abstract void draw();

! An abstract method must be part of an abstract class.
public abstract class Shape extends Object

! Abstract classes cannot be instantiated. It is a compile-time
error to try something like

Shape m = new Shape();

 where Shape has been declared to be abstract

Inheritance & Polymorphism 6

Abstract Classes

! A variable of an abstract type can refer to an object
of a subclass of that type.

! This permits polymorphism.
! Sometimes a collection, such as an array, of a

superclass or abstract superclass type contains
objects of subclasses.

! An iterator is used to traverse all objects in the
collection.

! A message sent to each object behaves in a
polymorphic manner.

Inheritance & Polymorphism 7

Case Study : Point,Circle,Cylinder (1)
public abstract class Shape extends Object
{

 public double area() {

 return 0.0;

 }

 public double volume() {
 return 0.0;

 }

 public abstract String getName();

 public abstract void Draw();

}

Inheritance & Polymorphism 8

Case Study : Point,Circle,Cylinder (2)
import javax.swing.JOptionPane;

public class Point extends Shape
{

 protected int x, y; // coordinates of the Point

 public Point(){ setPoint(0, 0); }

 public Point(int x, int y){ setPoint(x, y); }

 public void setPoint(int x, int y)

 {

 this.x = x;

 this.y = y;

 }

Inheritance & Polymorphism 9

Case Study : Point,Circle,Cylinder (3)
 public int getX() { return x; }

 public int getY() { return y; }

 public String toString()

 { return "[" + x + ", " + y + "]"; }

 public String getName(){ return "Point"; }

 public void Draw()

 {
 JOptionPane.showMessageDialog(null,getName() + ": " + this);

 }

}

Inheritance & Polymorphism 10

Case Study : Point,Circle,Cylinder (4)
import javax.swing.JOptionPane;

public class Circle extends Point { // inherits from Point
 protected double radius;

 public Circle(){

 // implicit call to superclass constructor

 setRadius(0);

 }

 public Circle(double r, int x, int y){

 super(x, y); // call to superclass constructor

 setRadius(r);

 }

 public void setRadius(double r)

 { radius = (r >= 0.0 ? r : 0.0); }

Inheritance & Polymorphism 11

Case Study : Point,Circle,Cylinder (5)
public double getRadius() { return radius; }

 public double area() { return Math.PI * radius * radius; }

 public String toString()

 {

 return "Center = " + "[" + x + ", " + y + "]" +

 "; Radius = " + radius;

 }

 public String getName()

 { return "Circle"; }

 public void Draw()

 {

 JOptionPane.showMessageDialog(null,getName() + ": " + this);

 }

}

Inheritance & Polymorphism 12

Case Study : Point,Circle,Cylinder (6)
import javax.swing.JOptionPane;

public class Cylinder extends Circle {
 protected double height; // height of Cylinder

 // no-argument constructor

 public Cylinder()

 {

 // implicit call to superclass constructor here

 setHeight(0);

 }

 // constructor

 public Cylinder(double h, double r, int x, int y)

 {

 super(r, x, y); // call to superclass constructor

 setHeight(h);

 }

Inheritance & Polymorphism 13

Case Study : Point,Circle,Cylinder (7)
 // Set height of Cylinder
 public void setHeight(double h)

 { height = (h >= 0 ? h : 0); }

 // Get height of Cylinder

 public double getHeight() { return height; }

 // Calculate area of Cylinder (i.e., surface area)

 public double area()

 {

 return 2 * super.area() +

 2 * Math.PI * radius * height;
 }

Inheritance & Polymorphism 14

Case Study : Point,Circle,Cylinder (8)
 // Calculate volume of Cylinder
 public double volume() { return super.area() * height; }

 // Convert a Cylinder to a String

 public String toString()

 { return super.toString() + "; Height = " + height; }

 // Return the class name

 public String getName() { return "Cylinder"; }

 public void Draw()

 {
 JOptionPane.showMessageDialog(null,getName() + ": " + this);

 }

}

Inheritance & Polymorphism 15

Case Study : Point,Circle,Cylinder (9)
import java.text.DecimalFormat;

import javax.swing.JOptionPane;

public class Tester {
 public static void main(String args[])

 {

 String output;

 Point point = new Point(7, 11);

 Circle circle = new Circle(3.5, 22, 8);

 Cylinder cylinder = new Cylinder(10, 3.3, 10, 10);

 Shape arrayOfShapes[];

 arrayOfShapes = new Shape[3];

Inheritance & Polymorphism 16

Case Study : Point,Circle,Cylinder (10)

 // aim arrayOfShapes[0] at subclass Point object

 arrayOfShapes[0] = point;

 // aim arrayOfShapes[1] at subclass Circle object

 arrayOfShapes[1] = circle;

 // aim arrayOfShapes[2] at subclass Cylinder object

 arrayOfShapes[2] = cylinder;

 point.Draw();

 circle.Draw();

 cylinder.Draw();

 DecimalFormat precision2 = new DecimalFormat("0.00");

Inheritance & Polymorphism 17

Case Study : Point,Circle,Cylinder (11)
 // Loop through arrayOfShapes and print the name,

 // area, and volume of each object.

 for (int i = 0; i < arrayOfShapes.length; i++)
 {

 arrayOfShapes[i].Draw();

 output = "\nArea = " + precision2.format(arrayOfShapes[i].area()) +
 "\nVolume = " + precision2.format(arrayOfShapes[i].volume());

 JOptionPane.showMessageDialog(null, output,"Demonstrating Polymorphism",

 JOptionPane.INFORMATION_MESSAGE);

 }

 System.exit(0);

 }

}

Polymorphism & Dynamic Binding

Inheritance & Polymorphism 18

Interfaces (1)

! Interfaces provide some features of multiple
inheritance:
n Like an abstract class, an interface defines a set of methods

(and perhaps constants as well), but no implementation.
n By using the implements keyword, a class can indicate that it

implements that set of methods.
n This makes it unnecessary for related classes to share a

common superclass or to directly subclass object.
n  It’s possible for a class to implement several interfaces.

Inheritance & Polymorphism 19

Interfaces (2)

! An interface is like a class with nothing but abstract methods
and final, static fields. All methods and fields of an interface
must be public.

! However, unlike a class, an interface can be added to a class
that is already a subclass of another class. Furthermore an
interface can apply to members of many different classes

! When you introduce a new class, you can choose to “support”
any number of interfaces

! For each interface you support you must implement member
functions defined in the interface

Inheritance & Polymorphism 20

Interfaces (3)

! All interface members are public.
! Methods are abstract.
! Constants are static and final.
! Generally, the keywords public, abstract, static and

final are not used in an interface declaration since
they will have these characteristics by default.

Inheritance & Polymorphism 21

Interfaces (4)
! A class can inherit from only one direct superclass, but it can

implement multiple interfaces.

public class MyClass extends MySuperClass implements IFace1,
IFace2, IFace3, … {

! If a class implements an interface but not all of its methods, it must
be an abstract class.

! Interface methods are implicitly abstract.
! Interfaces are defined in their own .java file named with the

interface name.

Interfaces (5)

Inheritance & Polymorphism 22

public interface IShape
{

 public String getName();

 public void Draw();

}

public class Point extends Shape implements IShape {

 //Previous implementation ...

 public String getName() {…}

 public void Draw() {…}

}

Inheritance & Polymorphism 23

Inheritance Principles

! Common operations and fields belong to a superclass
! Use inheritance to model the is-a relationship
! Don’t use inheritance unless ALL inherited methods make

sense.
! Use Polymorphism not type information

