
Produced
by

Department of Computing & Mathematics
South East Technological University
Waterford, Ireland

setu.ie

Mr. Dave Drohan (david.drohan@setu.ie)
Dr. Siobhán Drohan
Ms. Mairead Meagher

Programming Fundamentals 1

mailto:ddrohan@wit.ie

Primitive Arrays
A brief overview of Arrays in Java

https://www.java.com 2

Agenda
❑Why Arrays?

❑Primitive Arrays

❑Array Syntax

3https://www.java.com

Why Arrays?

4https://www.java.com

Why arrays?
❑We will look at different pieces of code to explain the

concept.

❑ In each piece of code, we:
■ read in 10 numbers from the keyboard
■ add the numbers
■ print the sum of all the numbers.

Source: Reas & Fry (2014)

https://www.java.com 5

import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = input.nextInt();
sum += n;

}

System.out.println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

Reads in 10 numbers
from the keyboard

https://www.java.com 6

import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = input.nextInt();
sum += n;

}

System.out.println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

As each number is
entered, it is added to

the value currently
stored in sum.

https://www.java.com 7

import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = input.nextInt();
sum += n;

}

System.out.println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

When the 10 numbers have
been read in,

the sum of the 10 numbers
is printed to the console.

https://www.java.com 8

Rule – Never lose input data
❑Always try to store input data for later use

❑ In real-life systems,
you nearly always need to use it again.

❑The previous code has NOT done this.
■ Let’s try another way ...

https://www.java.com 9

Remembering the Numbers
int n0,n1, n2, n3, n4, n5, n6, n7, n8, n9;
int sum = 0;

n0 = input.nextInt();
sum += n0;

n1 = input.nextInt();
//rest of code for n2 to n8

n9= input.nextInt();
sum += n9;

println("The sum of the values you typed in is : " + sum);

This works in the sense that we
have retained the input data.

https://www.java.com 10

int n0,n1, n2, n3, n4, n5, n6, n7, n8, n9;
int sum = 0;

n0 = input.nextInt();
sum += n0;

n1 = input.nextInt();
//rest of code for n2 to n8

n9= input.nextInt();
sum += n9;

println("The sum of the values you typed in is : " + sum);

Remembering the Numbers

BUT…we no longer use loops.
Imagine the code if we had to

read in 1,000 numbers?
We need a new approach…

This is where data structures
come in!

We will now look at arrays.

This works in the sense that we
have retained the input data.

https://www.java.com 11

Primitive Arrays

12https://www.java.com

Arrays (fixed-size collections)
❑Arrays are a way to collect associated values

❑Programming languages usually offer a special
fixed-size collection type: an array

❑Java arrays can store
■ objects
■ primitive-type values

❑Arrays use a special syntax
https://www.java.com 13

Primitive types

17

Primitive type

int num = 17;

Directly stored
in memory…

• We are now going to
look at a structure that
can store many values

of the same type.

• Imagine a structure
made up of sub-

divisions or sections…

• Such a structure is
called an array and

would look like:

https://www.java.com 14

Array Syntax

15https://www.java.com

Structure of a primitive array

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

https://www.java.com 16

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Structure of a primitive array

int[] numbers; numbers

null

https://www.java.com 17

Structure of a primitive array

int[] numbers;

0 0
1 0
2 0
3 0

numbers = new int[4];

numbers

https://www.java.com 18

Structure of a primitive array

int[] numbers;

0 0
1 0
2 0
3 0

We have declared an array
of int, with a capacity of

four.

Each element is of type int.

The array is called
numbers.

numbers = new int[4];

numbers

https://www.java.com 19

Structure of a primitive array

int[] numbers;

0 0
1 0
2 0
3 0

Index of each element in
the array

numbers = new int[4];

numbers

https://www.java.com 20

Structure of a primitive array

int[] numbers;

0 0
1 0
2 0
3 0

Default value for each
element of type int.

numbers

numbers = new int[4];

https://www.java.com 21

Structure of a primitive array

int[] numbers;

0 0
1 0
2 18
3 0

numbers[2] = 18;

We are directly
accessing the element
at index 2 and setting

it to a value of 18.

numbers

numbers = new int[4];

https://www.java.com 22

Structure of a primitive array

int[] numbers;

0 12
1 0
2 18
3 0

numbers[0] = 12;

We are setting the
element at index 0

and to a value of 12.

numbers[2] = 18;

numbers

numbers = new int[4];

https://www.java.com 23

Structure of a primitive array

0 12
1 0
2 18
3 0
Here we are printing the contents of

index location 2
i.e. 18 will be printed to the console.

print(numbers[2]);

numbers[0] = 12;

numbers[2] = 18;

numbers

numbers = new int[4];

int[] numbers;

Declaring a primitive array

int[] numbers;
//somecode

numbers = new int[4];

numbers

0 0
1 0
2 0
3 0

This is how we
previously

declared our
array of four
int, called
numbers.

https://www.java.com 25

Declaring a primitive array

int[] numbers;
//somecode

numbers = new int[4];

numbers

0 0
1 0
2 0
3 0

We can also
declare it like

this…

int[] numbers = new int[4];

https://www.java.com 26

Returning to our method
that reads in, and sums, 10 numbers

(typed in from the keyboard)…

and converting it to use primitive
arrays…

https://www.java.com 27

Version that doesn’t save the numbers
import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = input.nextInt();
sum += n;

}

System.out.println("The sum of the values you typed in is : " + sum);

Notice that,
each time a number is read in,

it overwrites the value stored in n.

It doesn’t remember
the individual numbers typed in.

https://www.java.com 28

import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {
 numbers[i] = input.readInt();
}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {
 sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Using arrays to remember numbers

Using an array
to store each value
that was entered.

29

import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {
 numbers[i] = input.readInt();
}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {
 sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Using arrays to remember numbers
Q: Can we reduce the code

to only have one loop?

Could we move the “sum”
code into the first loop?

Loop 1

Loop 2

30

Using arrays to remember numbers
import java.util.Scanner;
:
Scanner input = new Scanner(System.in);
:
int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {
 numbers[i] = input.readInt();
 sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

A: Yes

Move the “sum” code into the
first loop.

-> functionality doesn’t change
Loop 1

https://www.java.com 31

What if we wanted the user
to decide how many numbers

they wanted to sum?

https://www.java.com 32

import java.util.Scanner;
:

Scanner input = new Scanner(System.in);
int sum = 0;

//Using the numData value to set the size of the array
int numbers[];
System.out.println(”How many numbers do you need?”);
int numData = input.nextInt();

numbers = new int [numData];

//read in the data and sum the values
for (int i = 0; i < numData ; i ++) {
 numbers[i] = input.nextInt();
 sum += numbers[i];
 }

 println("The sum of the values you typed in is : " + sum);

1. Delcare numbers to be an array of type
integer.

2. numData takes in the size.
3. Use numData to initialize the array with

new specifying the size.

https://www.java.com 33

What type of data
can be stored

in a primitive array?

https://www.java.com 34

An array can store ANY TYPE of data.

String words = new String[30];

Spot spots[] = new Spot[20];

int numbers[] = new int[10];

byte smallNumbers[] = new byte[4];

char characters[] = new char[26];

Primitive Types

Object Types

https://www.java.com 35

Do we have to use
all the elements in the array?

https://www.java.com 36

Do we have to use all elements in the array?
❑No.

❑But…this might cause logic errors,
if we don’t take this into consideration
in our coding.

❑Consider this scenario…

https://www.java.com 37

Scenario – exam results and average grade
❑We have a class of 15

students.

❑They have a test coming up.

❑We want to store the results in
an array and then find the
average result.

38https://www.java.com

We create an array of int
with a capacity of 15results

0 56

1 65

2 45
3 78

4 98

5 41

6 40

7 55

8 45

9 51

10 42
11 78

12 0

13 0

14 0

Only 12 students sat the exam.
Their results were recorded in the
first 12 elements

To calculate the average result,
divide by the number of populated
elements - NOT the array capacity.

Average Grade

https://www.java.com 39

Do we have to use all elements in the array?
❑ If all elements in an array are NOT populated,

we need to:
■ have another variable (e.g. int size)
⬥containing the number of elements in the array actually

used.
■ ensure size is used when processing the array
⬥e.g.

for (int i= 0; i < size; i++)

❑ For now though,
we assume that all elements of the array are populated and
therefore ready to be processed.

https://www.java.com 40

Summary - Arrays
❑Arrays are structures that can store many values of the

same type
❑Rule – Never lose input data

■ Arrays enable us to store the data efficiently
■ We can use loops with arrays

❑Arrays can store ANY type
❑Declaring arrays int[] arryName;

//somecode
arryName = new int[4];

int[] arryName= new int[4];
OR

https://www.java.com 41

Questions?

https://www.java.com 42

https://www.java.com 43

