
Produced
by

Department of Computing & Mathematics
South East Technological University
Waterford, Ireland

setu.ie

Mr. Dave Drohan
(david.drohan@setu.ie)
Dr. Siobhán Drohan
Ms. Mairead Meagher

Programming Fundamentals 1

mailto:ddrohan@wit.ie

IntelliJ and Spot
Encapsulation and Spot

https://www.java.com 2

Agenda
❑What is Encapsulation?

❑Spot and Encapsulation

❑Basic Spot Class

❑The this keyword
3https://www.java.com

What is Encapsulation?

4https://www.java.com

Class

Variables
Methods

https://www.java.com 5

Encapsulation
❑Encapsulation (data hiding) is a fundamental Object

Oriented concept

❑How to achieve encapsulation?
1. wrap the data (fields) and code acting on the data

(methods) together as single unit
2. hide the fields from other classes
3. access the fields only through the methods of their

current class

http://www.tutorialspoint.com/java/java_encapsulation.htm

https://www.java.com 6

http://www.tutorialspoint.com/java/java_encapsulation.htm

Encapsulation in Java – steps 1-3
Encapsulation Step Approach in Java

1. Wrap the data (fields) and code
acting on the data (methods)
together as single unit

public class ClassName
{
 Fields
 Constructors
 Methods
}

2. Hide the fields from other
classes

Declare the fields of a class as
private

3. Access the fields only through
the methods of their current class

Provide public getter and setter
methods to modify and view the fields
values

https://www.java.com 7

Access Modifiers
❑Java provides a number of access modifiers to set

access levels for classes, fields, methods and
constructors.

❑The four access levels are:
■ Visible to the package, the default. No modifiers

needed
■ Visible to the class only (private)
■ Visible to the world (public)
■ Visible to the package and all subclasses (protected)

https://www.java.com 8

Access Modifiers
❑Java provides a number of access modifiers to set

access levels for classes, fields, methods and
constructors.

❑The four access levels are:
■ Visible to the package, the default. No modifiers

needed.
■ Visible to the class only (private)
■ Visible to the world (public)
■ Visible to the package and all subclasses (protected)

We will focus on these
this semester

https://www.java.com 9

Spot and Encapsulation

10https://www.java.com

Spot and Encapsulation

11https://www.java.com

Step 1

Wrap the data (fields) and code
acting on the data (methods)

together as single unit

Encapsulation step 1 is complete;
all fields, constructors and

methods
are all in a single unit, called Spot.

https://www.java.com 12

Encapsulation Step Approach in Java
1. Wrap the data (fields) and code
acting on the data (methods)
together as single unit

public class ClassName
{
 Fields
 Constructors
 Methods
}

Spot and Encapsulation

13https://www.java.com

Step 2

Hide the data (fields) from other
Classes

2. Hide the fields from other
classes

Declare the fields of a class as
private

Encapsulation step 2
We have made our fields

private, however our app is
no longer compiling!

Encapsulation Step Approach in Java

https://www.java.com 14

Encapsulation step 2
The problem lies in the

Driver class:
• We are trying to directly

access fields that are
now private.

• These fields are no
longer visible in Driver.

https://www.java.com 15

2. Hide the fields from other
classes

Declare the fields of a class as
private

Encapsulation Step Approach in Java

16https://www.java.com

The private fields are not viewable
or updatable outside the class

Spot. Other classes don’t know
these exist.

2. Hide the fields from other
classes

Declare the fields of a class as
private

Encapsulation Step Approach in Java

Spot and Encapsulation

17https://www.java.com

Step 3

Access the data (fields) only
through the methods of their

current class

Solution: Getters and Setters

18https://www.java.com

Encapsulation Step 3
Provide public getter and

setter methods to modify and
view the fields values.

Getters (Accessor Methods)
❑Accessor methods

■ return information about the state of an object i.e. the
values stored in the fields

❑A ‘getter’ method
■ is a specific type of accessor method and typically:

⬥ contains a return statement
(as the last executable statement in the method)

⬥ defines a return type
⬥ does NOT change the object state

https://www.java.com 19

Getters

public float getDiameter()
{

return diameter;
}

return type
method name

parameter list
(empty)

start and end of method body (block)

return statement

visibility modifier

https://www.java.com 20

Setters (Mutator methods)
❑Mutator methods

■ change (i.e. mutate) an object’s state

❑A ‘setter’ method
■ is a specific type of mutator method and typically:
⬥contains an assignment statement
⬥takes in a parameter
⬥changes the object state.

https://www.java.com 21

Setters

22https://www.java.com

public void setDiameter(float diameter)
{
 this.diameter = diameter;
}

return type

method name parametervisibility modifier

assignment
statement

field being mutated Value passed
as a parameter

Getters/Setters
❑For each instance field in a class, you are normally

asked to write:
■ A getter
⬥Return statement

■ A setter
⬥Assignment statement

3. Access the fields only through
the methods of their current class.

Provide public getter and setter
methods to modify and view the fields
values.

Encapsulation Step Approach in Java

https://www.java.com 23

Spot and Encapsulation

24https://www.java.com

Step 3

Getters

Spot

xCoord
yCoord
diameter

Spot()
getxCoord()
getyCoord()
getDiameter()

Encapsulation Step 3:
Provide public getter
methods to view the

fields values.
Spot
class

https://www.java.com 25

Driver class

https://www.java.com 26

Encapsulation Step 3:
Use these new getter
methods to view the

fields values.

Spot and Encapsulation

27https://www.java.com

Step 3

Setters

Spot

xCoord
yCoord
diameter
Spot()
getxCoord()
getyCoord()
getDiameter()
setxCoord(float)
setyCoord(float)
setDiameter(float)

Encapsulation Step 3:
Provide public setter

methods to update the
fields values.

Spot
class

https://www.java.com 28

New values for xCoord, yCoord, diameter…
❑To demonstrate the use of these mutator/setter

methods, we need to update the Spot variables with
new values.

❑The easiest way to get new values is to ask the user
to enter them on the console.

❑To do this, we will use the Scanner
class (which we will cover in more
detail next week).

Spot
class

https://www.java.com 29

Driver class

Scanner Class to
read from the console

https://www.java.com 30

Method to ask the user to
enter new values for the

three fields.

The setters are then called to
update the values in the spot

object.

https://www.java.com 31

Driver class

The this Keyword

32https://www.java.com

In Spot, there are three private instance
fields:

https://www.java.com 33

In Spot, there are three private instance
fields:

In Spot, there is a setter for each of these
fields:

https://www.java.com 34

In Spot, there are three private instance
fields:

The instance fields
(global) are named the

same as the parameters
for the setters

(which are local fields).

https://www.java.com 35

In Spot, there is a setter for each of these
fields:

In Spot, there are three private instance
fields:

https://www.java.com 36

In Spot, there is a setter for each of these
fields:

This is called name
overloading.

We use this. to
distinguish between local

and global variables.

In Spot, there is a setter for each of these
fields:

In Spot, there are three private instance
fields:

this. refers to the
current objects fields
i.e. the global ones.

https://www.java.com 37

In Spot, there is a setter for each of these
fields:

In Spot, there are three private instance
fields:

https://www.java.com 38

The variables without
the this. are the local
ones that are destroyed

when the method is
finished running i.e. the

local variables.

In Spot, there are three private instance
fields:

In Spot, there is a setter for each of these
fields:

The variables without
the this. are the local

ones that are destroyed
when the method is

finished running i.e. the
local ones.

https://www.java.com 39

Questions?

https://www.java.com 40

https://www.java.com 41

