
Produced
by

Department of Computing & Mathematics
South East Technological University
Waterford, Ireland

setu.ie

Mr. Dave Drohan (david.drohan@setu.ie)
Dr. Siobhán Drohan
Ms. Mairead Meagher

Programming Fundamentals 1

mailto:ddrohan@wit.ie

Introduction to Processing
Iteration in Programming –
For Loops

https://processing.org 2

Agenda
❑Use of loops (for loops)

❑Comparative use of while and for loops

❑Lab03 - Challenge 1

❑Lab03 - Challenge 3
3https://processing.org

Use of loops (for loops)

4https://processing.org

For loop pseudo-code

5https://processing.org

for(initialization; boolean condition; post-body action)
{
 statements to be repeated
}

General form of a for loop

Recap: Processing Example 4.5
This was a slide from the
previous talk. We used a

while loop to repeatedly print
the four rectangles to the

display window.

https://processing.org 6

Processing Example 4.7
This code does the same

as the previous slide,
except that we use a

different loop: for

https://processing.org 7

For loop syntax

for(initialization; boolean condition; post-body action)
{
 statements to be repeated
}

https://processing.org 8

For loop syntax

for(initialization; boolean condition; post-body action)
{
 statements to be repeated
}

https://processing.org 9

For loop syntax

initialization int i = 0; Initialise a loop control variable (LCV) e.g. i.
It can include a variable declaration.

boolean
condition i < 4; Is a valid boolean condition that typically

tests the loop control variable (LCV).

post-body
action i++ A change to the loop control variable (LCV).

Contains an assignment statement.

https://processing.org 10

for Loop Flowchart

statement(s)trueboolean
condition?

false

update

https://processing.org 11

Returning to: Processing Example 4.7
Q: Do we need the

yCoordinate variable?

Can you think of a different
approach using a for loop?

https://processing.org 12

Processing Example 4.8
A: We can eliminate the
yCoordinate variable by

setting the i variable to 60
and incrementing it by 20.

https://processing.org 13

For loop: all parts are optional
for (; ;)
{
 // statements here
}

This is an infinite
loop…

https://processing.org 14

For loops can be nested

for (int i=0; i < 4; i++)
for (int j=0; j < 4; j++)

println("The value of i is: " + i + " and j is: " + j);

The value of i is: 0 and j is: 0
The value of i is: 0 and j is: 1
The value of i is: 0 and j is: 2
The value of i is: 0 and j is: 3
The value of i is: 1 and j is: 0
The value of i is: 1 and j is: 1
The value of i is: 1 and j is: 2
The value of i is: 1 and j is: 3
The value of i is: 2 and j is: 0
The value of i is: 2 and j is: 1
The value of i is: 2 and j is: 2
The value of i is: 2 and j is: 3
The value of i is: 3 and j is: 0
The value of i is: 3 and j is: 1
The value of i is: 3 and j is: 2
The value of i is: 3 and j is: 3

https://processing.org 15

Comparative use of while and for loops

16https://processing.org

for versus while

for(int i = 0; i < 4; i++) {
rect(50, yCoordinate, 500, 10);
yCoordinate += 20;

}

Processing Example 4.7(for loop)

int i = 0;
while(i < 4) {

rect(50, yCoordinate, 500, 10);
yCoordinate += 20;
i++;

}

Processing Example 4.5 (while loop)

Variable i is the Loop Control Variable
(LCV).

It must be initialised, tested and
changed.

int i = 0 is the initialisation.

i < 4 is the boolean condition
i.e. the test

i++ is the post-body action
i.e. the change.

https://processing.org 17

Lab03 - Challenge 1

18https://processing.org

Lab03 - Challenge 1 – bouncing ball
Draw a continuously bouncing ball. (vertical only)
• the xCoordinate remains the same value

the yCoordinate will change.

Assumptions:
• display window is 500 x 400
• ball is 100 in diameter.
• static xCoordinate is 250.
• background is called in the draw()

method.
• starting yCoordinate is 300.

https://processing.org 19

Lab03 - Challenge 1
float yCoordinate = 300;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);

}

https://processing.org 20

Assumptions:
• display window is 500 x 400
• ball is 100 in diameter.
• static xCoordinate is 250.

Lab03 - Challenge 1
float yCoordinate = 300;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);

}

https://processing.org 21

Assumptions:
• display window is 500 x 400
• ball is 100 in diameter.
• static xCoordinate is 250.
• background is called in the draw()

method.
• starting yCoordinate is 300.

Lab03 - Challenge 1 float yCoordinate = 300;
boolean bounceUp = false;
void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

• We need to track whether the ball
is bouncing up or falling.

• To do this, we will use a boolean
variable bounceUp.
It will be:
• true if the ball is bouncing up
• false if the ball is falling and

https://processing.org 22

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);
if (bounceUp)
// code to bounce the ball up

if (!bounceUp)
// code when ball is falling

}

float yCoordinate = 300;
boolean bounceUp = false;

void setup() {
size(500,400);
fill(255, 10, 10);
stroke(255);

}

void draw() {
background(0);
ellipse(250, yCoordinate, 100, 100);
//ball is bouncing up
if (bounceUp){

if (yCoordinate > 100)
yCoordinate = yCoordinate - 1;

else
bounceUp = false;

}
//ball is falling down
if (!bounceUp){

if (yCoordinate <= 350)
yCoordinate = yCoordinate + 1;

else
bounceUp = true;

}
}

https://processing.org 23

Lab03 - Challenge 3

24https://processing.org

Lab03 - Challenge 3 – Moving Line
• In a new sketch, draw a vertical line that is the height of

your display window.

• It starts in the left most position of your display window and
moves right, pixel by pixel, until it reaches the right hand
side of your display window.

https://processing.org 25

Lab03 - Challenge 3 – Moving Line

https://processing.org 26

• Upon reaching the right hand side, the vertical line should
reverse direction and return, pixel by pixel, to the left hand
side of the display window.

• As your vertical line is continually traversing the display
window, your grayscale background should be varying
very slightly in colour.

Lab03 - Challenge 3 – Moving Line

float background = 120;

void setup(){
size(300,400);

background(background);
strokeWeight(4);

}

https://processing.org 27

Assumptions:
• Window size 300x400.
• Background is initially set to 120.
• Stroke weight is 4

Lab03 - Challenge 3 – Moving Line
• Draw a vertical line that is

the height of your display
window.

• Call background to clear
the previously drawn line.

void draw()
{

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

float background = 120;
float xCoordinate = 0.0;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

https://processing.org 28

void draw(){
xCoordinate = xCoordinate + 1;

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

Lab03 - Challenge 3 – Moving Line
This vertical line should start in the left most position of your
display window and move right, pixel by pixel, until it reaches the
right hand side of your display window.

https://processing.org 29

void draw(){
xCoordinate = xCoordinate + 1;
background = background + 0.5;
background(background);
line (xCoordinate, 0, xCoordinate, height);

}

Lab03 - Challenge 3 – Moving Line
As your vertical line is continually traversing the display
window, your grayscale background should be varying very
slightly in colour.

https://processing.org 30

Lab03 - Challenge 3 – Moving Line
• Upon reaching the right hand side, the vertical line should reverse direction

and return, pixel by pixel, to the left hand side of the display window.

• We need to keep track of the direction that the line should be moving
i.e. is it going left-to-right, or has it reversed direction and is going from
right-to-left?

• We will use a boolean variable to do this:
• boolean reverseDirection will be initially set to false. indicating a left-to-

right direction.
• false indicates a left-to-right direction
• true indicates a right-to-left direction.

https://processing.org 31

void draw()
{
if (!reverseDirection){

background = background + 0.5;
xCoordinate = xCoordinate + 1;

}
else{
background = background - 0.5;
xCoordinate = xCoordinate - 1;

}

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

float background = 120;
float xCoordinate = 0.0;
boolean reverseDirection = false;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

https://processing.org 32

Lab03 - Challenge 3 – Moving Line

Lab03 - Challenge 3 – Moving Line
• But, we have no code written that will set the flag to true e.g.

reverseDirection = true;

• Under what circumstances should the flag be set to true?

• And when should it be set back to false?

https://processing.org 33

void draw(){
if (xCoordinate == width)

reverseDirection = true;
if (xCoordinate == 0)

reverseDirection = false;

if (!reverseDirection){
background = background + 0.5;
xCoordinate = xCoordinate + 1;

}
else{
background = background - 0.5;
xCoordinate = xCoordinate - 1;

}

background(background);
line (xCoordinate, 0, xCoordinate, height);

}

https://processing.org 34

float background = 120;
float xCoordinate = 0.0;
boolean reverseDirection = false;

void setup(){
size(300,400);
background(background);
strokeWeight(4);

}

Lab03 - Challenge 3 – Moving Line

Questions?

https://processing.org 35

References
❑Reas, C. & Fry, B. (2014) Processing – A Programming

Handbook for Visual Designers and Artists, 2nd Edition,
MIT Press, London.

https://processing.org 36

https://processing.org 37

