

Programming Fundamentals 1

Produced Mr. Dave Drohan (david.drohan@setu.ie)
by Dr. Siobhán Drohan
Ms. Mairead Meagher
Department of Computing \& Mathematics
South East Technological University
Waterford, Ireland

For loops

looping• for, while loops

Agenda
\square Use of loops (for loops)
\square Comparative use of while and for loops
\square Lab03 - Challenge 1
\square Lab03 - Challenge 3

Use of loops (for loops)

For loop pseudo-code

General form of a for loop

for(initialization; boolean condition; post-body action) \{
statements to be repeated
\}

Recap: Processing Example 4.5

```
int yCoordinate = 60;
size(600, 300);
background(102);
fill(255);
noStroke();
int i = 0;
while(i < 4)
{
    rect(50, yCoordinate, 500, 10);
    yCoordinate += 20;
    i++;
```

\}

This was a slide from the previous talk. We used a while loop to repeatedly print the four rectangles to the display window.

Processing Example 4.7

This code does the same as the previous slide, except that we use a different loop: for

For loop syntax

```
for(initialization; boolean condition; post-body action)
{
    statements to be repeated
}
```


For loop syntax

For loop syntax

$$
\text { for (int i }=0 ; i<4 ; i++)
$$

initialization	int $\mathrm{i}=0 ;$	Initialise a loop control variable (LCV) e.g. i. It can include a variable declaration.
boolean condition	$\mathrm{i}<4 ;$	Is a valid boolean condition that typically tests the loop control variable (LCV).
post-body action	$\mathrm{i}++$	A change to the loop control variable (LCV). Contains an assignment statement.

for Loop Flowchart

Returning to: Processing Example 4.7

int yCoordinate $=60$;
size(600, 300);
background (102) ;
fill(255);
noStroke();
for (int $\mathbf{i}=0 ; \mathbf{i}<4 ; \mathbf{i + +})$
\{
rect(50, yCoordinate, 500, 10);
yCoordinate $=$ yCoordinate +20 ;

Q: Do we need the yCoordinate variable?

Can you think of a different approach using a for loop?
\}

Processing Example 4.8

A: We can eliminate the yCoordinate variable by setting the i variable to 60 and incrementing it by 20.

For loop: all parts are optional

```
for (; ; )
{
// statements here
This is an infinite loop...
```


For loops can be nested

The value of i is: 0 and j is: 0 The value of i is: 0 and j is: 1 The value of i is: 0 and j is: 2 The value of i is: 0 and j is: 3 The value of i is: 1 and j is: 0 The value of i is: 1 and j is: 1 The value of i is: 1 and j is: 2 The value of i is: 1 and j is: 3 The value of i is: 2 and j is: 0 The value of i is: 2 and j is: 1 The value of i is: 2 and j is: 2 The value of i is: 2 and j is: 3
The value of i is: 3 and j is: 0 The value of i is: 3 and j is: 1 The value of i is: 3 and j is: 2 The value of i is: 3 and j is: 3

Comparative use of while and for loops

for versus while

for(int i $=0 ; \mathrm{i}<4 ; \mathrm{i}++$) $\{$
rect(50, yCoordinate, 500, 10);
yCoordinate $+=20$;
\}
Processing Example 4.5 (while loop)

```
int i = 0;
while(i < 4) {
    rect(50, yCoordinate, 500, 10);
    yCoordinate += 20;
    i++;
}
```

Variable i is the Loop Control Variable (LCV).
It must be initialised, tested and changed.
int $\mathrm{i}=0$ is the initialisation.
$\mathrm{i}<4$ is the boolean condition i.e. the test
i++ is the post-body action i.e. the change.

Lab03 - Challenge 1

Lab03 - Challenge 1 - bouncing ball

Draw a continuously bouncing ball. (vertical only)

- the xCoordinate remains the same value

Assumptions:

- display window is 500×400
- ball is 100 in diameter.
- static xCoordinate is 250 .
- background is called in the $\operatorname{draw}()$ method.
- starting yCoordinate is 300 .

Lab03 - Challenge 1

Assumptions:

- display window is 500×400

```
float yCoordinate = 300;
void setup() {
    size(500,400);
    fill(255, 10, 10);
    stroke(255);
```

- ball is 100 in diameter.
- static xCoordinate is 250.

```
void draw(i)
    backaround(0);
    ellipse(250, yCoordinate, 100, 100);
```

\}

Lab03 - Challenge 1

Assumptions:

- display window is 500×400
- ball is 100 in diameter.
- static xCoordinate is 250.
- background is called in the draw method.
- starting yCoordinate is 300 .


```
void draw() {
```

background(0);
ellipse(250, yCoordinate, 100, 100);

Lab03 - Challenge 1

float yCoordinate $=300$; boolean bounceUp = false;

- We need to track whether the ball is bouncing up or falling.
- To do this, we will use a boolean variable bounceUp. It will be:
- true if the ball is bouncing up - false if the ball is falling and

```
void setup() {
    size(500,400);
    fill(255, 10, 10);
    stroke(255);
}
```

void draw() \{
background(0);
ellipse(250, yCoordinate, 100, 100);
if (bounceUp)
// code to bounce the ball up
if (!bounceUp)
// code when ball is falling
\}

```
float yCoordinate = 300;
boolean bounceUp = false;
void setup() {
    size(500,400);
    fill(255, 10, 10);
    stroke(255);
}
```

```
void draw() \{
    background(0);
    ellipse(250, yCoordinate, 100, 100);
    //ball is bouncing up
    if (bounceUp)\{
        if (yCoordinate > 100)
            \(y\) Coordinate \(=y\) Coordinate -1 ;
    else
        bounceUp = false;
    \}
    //ball is falling down
    if (!bounceUp)\{
        if (yCoordinate <=350)
            yCoordinate \(=y\) Coordinate +1 ;
    else
            bounceUp = true;
\}
```


Lab03 - Challenge 3

Lab03 - Challenge 3 - Moving Line

- In a new sketch, draw a vertical line that is the height of your display window.
- It starts in the left most position of your display window and moves right, pixel by pixel, until it reaches the right hand side of your display window.

Lab03 - Challenge 3 - Moving Line

- Upon reaching the right hand side, the vertical line should reverse direction and return, pixel by pixel, to the left hand side of the display window.
- As your vertical line is continually traversing the display window, your grayscale background should be varying very slightly in colour.

Lab03 - Challenge 3 - Moving Line

Assumptions:

- Window size 300×400.
- Background is initially set to 122
- Stroke weight is 4
float background $\underset{\Longrightarrow}{\Longrightarrow} 120$;
void setup ()\{
size $(300,400)$;
background(background);
strokeWeight(4);

Lab03 - Challenge 3 - Moving Line

float background = 120;

- Draw a vertical line that is the height of your display window.
- Call background to clear the previously drawn line.
float $/ x$ Coordinate $=0.0$;

Lab03 - Challenge 3 - Moving Line

This vertical line should start in the left most position of your display window and move right, pixel by pixel, until it reaches the right hand side of your display window.

void draw()\{ x Coordinate $=x$ Coordinate +1 ;
background(background); line (xCoordinate, 0, xCoordinate, height);
\}

Lab03 - Challenge 3 - Moving Line

As your vertical line is continually traversing the display window, your grayscale background should be varying very slightly in colour.

```
void draw(){
    xCoordinate = xCoordinate +1;
    background = background + 0.5;
    background(background);
    line (xCoordinate, 0, xCoordinate, height);
}
```


Lab03 - Challenge 3 - Moving Line

- Upon reaching the right hand side, the vertical line should reverse direction and return, pixel by pixel, to the left hand side of the display window.
- We need to keep track of the direction that the line should be moving i.e. is it going left-to-right, or has it reversed direction and is going from right-to-left?
- We will use a boolean variable to do this:
- boolean reverseDirection will be initially set to false. indicating a left-toright direction.
- false indicates a left-to-right direction
- true indicates a right-to-left direction.

Lab03 - Challenge 3 - Moving Line

void draw()
\{
if (!reverseDirection)\{
background $=$ background +0.5 ;
x Coordinate $=x$ Coordinate +1 ;
\}
else\{
background $=$ background -0.5 ; x Coordinate $=x$ Coordinate -1 ;
\}
float background $=120$;
float \times Coordinate $=0.0 ;$
float \times Coordinate $=0.0$;
boolean reverseDirection = false;
void setup()\{
size(300,400); background(background); strokeWeight(4);
background(background);
line (xCoordinate, 0, xCoordinate, height);

Lab03 - Challenge 3 - Moving Line

- But, we have no code written that will set the flag to true e.g. reverseDirection = true;
- Under what circumstances should the flag be set to true?
- And when should it be set back to false?

Lab03 - Challenge 3 - Moving Line

void draw()\{

```
if (xCoordinate == width)
    reverseDirection = true;
    if (xCoordinate == 0)
        reverseDirection = false;
```

if (!reverseDirection)\{
background $=$ background +0.5 ;
x Coordinate $=x$ Coordinate +1 ;
\}
else\{
background = background - 0.5;
x Coordinate $=x$ Coordinate -1 ;
\}
background(background);
line (xCoordinate, 0, xCoordinate, height);

```
}
```

float background $=120$;
float \times Coordinate $=0.0$;
boolean reverseDirection = false;
void setup()\{
size(300,400);
background(background); strokeWeight(4);

Questions?

References

-Reas, C. \& Fry, B. (2014) Processing - A Programming Handbook for Visual Designers and Artists, $2^{\text {nd }}$ Edition, MIT Press, London.
$\frac{\text { Thanks. }}{\text { ENO }}$

