

Programming Fundamentals 1

Produced Mr. Dave Drohan (david.drohan@setu.ie)

by Dr. Siobhán Drohan
Ms. Mairead Meagher
Department of Computing \& Mathematics
South East Technological University
Waterford, Ireland

Conditional

Statements

Introduction to Processing

Conditional Statements and

 Boolean Expressions
Agenda

\square Conditional Statements
\square Boolean Conditions \& Relational Operators
-Logical Operators

Conditional Statements

Conditional Statement Syntax (1)

if(perform some test)
\{
Do these statements if the test gave a true result
\}

Conditional Statement Syntax (1)

Conditional Statement Syntax (2)

Conditional Statement Syntax (3)

```
if(conditionl...perform some test)
{
            Do these statements if conditionl gave a true result
}
else if(condition2...perform some test)
{
    Do these statements if conditionl gave a false
result and condition2 gave a true result
}
else
{
    Do these statements if both condition1 and
        condition2 gave a false result
}
```


Boolean Conditions \& Relational Operators

Boolean conditions

\square A boolean condition is an expression that evaluates to either true or false e.g.

$$
\text { mouseX < } 50
$$

\square An if statement evaluates a boolean condition and its result will determine which portion of the if statement is executed.

Boolean conditions

```
// Do these statements before.
if (boolean condition)
{
    // Perform this clause if the
    // condition is true.
}
// Do these statements after.
```


Java Relational Operators

Operator	Use	Returns true if...
$>$	op1 $>$ op2	op1 is greater than op2
$>=$	op1 $>=$ op2	op1 is greater than or equal to op2
$<$	op1 $<$ op2	op1 is less than op2
$<=$	op1 $<=$ op2	op1 is less than or equal to op2
$==$	op1 $==$ op2	op1 and op2 are equal
$\boldsymbol{l}=$	op1 $!=$ op2	op1 and op2 are not equal

BEWARE $=$ is an assignment operator.
It doesn't test for equality. Use $==$ to test for equality in primitive types
Source: http://www.freejavaguide.com/relational operators.htm

Some notes on the if statement

\square An if statement IS a statement - it is only executed once
-When your if statement only has one statement inside it, you do not need to use the curly braces
\square For example, both of these are the same:

```
if (mouseX < 50)
{
    rect(0, 0, 50, 100);
```

```
if (mouseX < 50)
    rect(0, 0, 50, 100);
```


Some notes on the if statement

-The semi-colon (;) is a statement terminator.

Conditional Example 3.1

Functionality:
If the x -coordinate of the mouse pointer is on the:
\square left half of the display window, draw a rectangle on the left hand side.
\square right half of the display window,
 draw a rectangle on the right hand side.

Conditional Example 3.1-code

```
//Reas, C. & Fry, B. (2014) Processing - A Programming
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background(204);
    if (mouseX < 50) {
        rect(0, 0, 50, 100); // Left
    } else {
        rect(50, 0, 50, 100); // Right
    }
}
```


Conditional Example 3.1-code

```
//Reas, C. & Fry, B. (2014) Processing - A Programming
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background(204);
    if (mouseX < 50) {
    rect(0, 0, 50, 100); // Left
    } else {
        rect(50, 0, 50, 100); // Right =
```


Conditional Example 3.2

Functionality:
If the x-coordinate of the mouse pointer is on the:
\square left third of the display window, draw a rectangle on the left third of the window.
\square middle third of the display window, draw a rectangle on the middle third of the window.
\square right third of the display window, draw a rectangle on the right third of the window.

Conditional Example 3.2 - code

```
//Reas, C. & Fry, B. (2014) Processing - A Programming
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background(204);
    if (mouseX < 33) {
        rect(0, 0, 33, 100); // Left
    } else if (mouseX < 66) {
        rect(33, 0, 33, 100); // Middle
    } else {
        rect(66, 0, 33, 100); // Right
    }
}
```


Conditional Example 3.2 - code

```
//Reas, C. & Fry, B. (2014) Processing - A Programming
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background(204);
    if (mouseX < 33) {
    rect(0, 0, 33, 100); // Left
    } else if (mouseX < 66) {
        rect(33, 0, 33, 100); // Middle
    } else {
        rect(66, 0, 33, 100); // Right
    }
```


Logical Operators

Logical operators

LLogic operators operate on boolean values.
-They produce a new boolean value as a result.
-The ones that we will use, so far, are:

```
\square && (and)
\square| (or)
\square!
(not)
```


Logical operators - AND

a \&\& b

- This evaluates to true if both a and b are true.
- It is false in all other cases.

\mathbf{a}	b	$\mathrm{a} \& \& \mathrm{~b}$
0	0	0
0	1	0
1	0	0
1	1	1

Logical operators - OR

a \| b

- This evaluates to true if either a or b or both are true, and false if they are both false.

a	b	$a \operatorname{lI} b$
0	0	0
0	1	1
1	0	1
1	1	1

Logical operators - NOT

!a

- This evaluates to true if a is false, and false if a is true.

\mathbf{a}	$\mathbf{l} \mathbf{a}$
0	1
1	0

Logical operators - Quiz

$$
\begin{aligned}
& \text { int } a=5 ; \\
& \text { int } b=10 ; \\
& \text { int } c=7 ;
\end{aligned}
$$

What is the result of each of these boolean expressions:

$$
\text { Q1 } \quad(a>b) \& \&(a<c)
$$

$$
\text { Q2 } \quad(\mathrm{a}<\mathrm{b}) \|(\mathrm{c}<\mathrm{a})
$$

$$
\text { Q3 } \quad!(b<a) \& \&(c>b)
$$

Conditional Example 3.3

Functionality:

If the mouse pointer is:
$\square i n s i d e ~ t h e ~ r e c t a n g l e ~ c o o r d i n a t e s, ~$ then fill the rectangle with white.
\square otherwise, fill with black.

Conditional Example 3.3 - code

```
//Reas, C. & Fry, B. (2014) Processing - A Prog
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background(204);
    if ((mouseX > 40) && (mouseX < 80) &&
        (mouseY > 20) && (mouseY < 80)) {
        fill(255); //White
    } else {
        fill(0); //Black
    }
    rect(40, 20, 40, 60);
}
```


Conditional Example 3.3 - code

```
//Reas, C. & Fry, B. (2014) Processing - A Prog
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background (204):
    if ((mouseX > 40) && (mouseX < 80) &&
        (mouseY > 20) && (mouseY < 80))
        fill(255); //White
    } else {
        fill(0);
        //Black
    }
    rect(40, 20, 40, 60);
```


Conditional Example 3.4

Functionality:
\square If the mouse pointer is in the upper-left quadrant of the display window, draw a black rectangle
 covering the upper-left quadrant of the window.
\square Repeat this approach for upperright, lower-left and lower-right quadrants.

```
void setup() {
    size(100, 100);
    noStroke();
    fill(0);
}
void draw() {
    background (204);
    if ((mouseX <= 50) && (mouseY <= 50)) {
        rect(0, 0, 50, 50); // Upper-left
    }
    else if ((mouseX <= 50) && (mouseY > 50)) {
        rect(0, 50, 50, 50); // Lower-left
    }
    else if ((mouseX > 50) && (mouseY <= 50)) {
        rect(50, 0, 50, 50); // Upper-right
    }
    else {
        rect(50, 50, 50, 50); // Lower-right
    }
}
```


References

-Reas, C. \& Fry, B. (2014) Processing - A Programming Handbook for Visual Designers and Artists, $2^{\text {nd }}$ Edition, MIT Press, London.

Questions?
$\frac{\text { Thanks. }}{\frac{n}{2}(\dot{B})}$

