Public and private access

Why do we need private fields and public
methods?

Produced Ms. Mairead Meagher
by: Dr.Siobhan Drohan

@ Waterford Institute of Technology Department of Computing and Mathematics
)

5 INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http:/ / WWW'W't"e/
La=Eg”

Class Diagram for Spot Version 2

Object Type/ . Spot
Class Name
xCoord
yCoord
Fields i.e. the diameter
) >
attributes of the class red
green
blue
gray
Spot() i
Spot(float, float, float) Overloaded
Methods Spot(float, float, float, int) Constructor
i.e. the behaviours of >| Spot(float, float, float, int, int, int)
the class display()
colour(int, int, int) Overloaded
colour(int) Methods

move(float, float) |

class Spot{

S pOt Cla SS float xCoord, yCoord;
. float diameter;
- Ve 'sion 2 int red, green, blue;
Spot()
{

}

Spot (float xCoord, float yCoord, float diameter)
{

this.xCoord = xCoord;

this.yCoord = yCoord;

this.diameter = diameter;

}

// colour methods...
// display method...
// move method...

}

Source: Reas & Fry (2014)

class Spot{

SpOt CIaSS // fields and constructors...
— Version 2 void display ()
{ellipse(xCoord, yCoord, diameter, diameter);
}
ERCENS.S void colour (int red, int green, int blue)

{
this.red = red;

this.green = green;
this.blue = blue;
fill (red, green, blue);

}

void colour (int gray){
this.gray = gray;
fill (this.gray);
}
}

Suurce: neds & rry (zuid)

SpOt ClaSS — class Spot{

float xCoord, yCoord;

VerSion 2 float diameter;

int red, green, blue;

Spot sp;
// constructors...
void setup() void display(){
{ ellipse(xCoord, yCoord, diameter, diameter);
size (100,100); }
noStroke();
sp = new Spot(33, 50, 30); void colour(int red, int green, int blue)
} {
this.red = red;
void draw() this.green = green;
{ this.blue = blue;
background(0); fill (red, green, blue);
sp.colour(255, 0, 0); }
< sp-diameter = 30000; T»move methods...
sp.display(); }
}

Source: Reas & Fry (2014)

Our Our design smells!

 We can directly access the diameter field
(and all other fields) in the Spot class
from another class, and set it to a value that is
completely preposterous!

* Also, when we directly access a field in a class,
we are applying a “behaviour” to that field
l.e. resizing the circle.

— But, aren’t methods supposed to be the

Our design smells!

* Our design violates one of the basic principles of object-
oriented design:

Encapsulation!

Encapsulation

* Encapsulation (data hiding)
is a fundamental Object Oriented concept.
* How to achieve encapsulation?

1. wrap the data (fields) and code acting on the data (methods)
together as single unit.

2. hide the fields from other classes.
3. access the fields only through the methods of their current class.

http://www.tutorialspoint.com/java/java encapsulation.htm

http://www.tutorialspoint.com/java/java_encapsulation.htm

Encapsulation in Java — steps 1-3

Encapsulation Step Approach in Java

1. Wrap the data (fields) [public class ClassName

and code acting on the | 1 |
data (methods) Fields

Constructors

together as single unit.
Methods

}

2. Hide the fields from | Declare the fields of a class as private.
other classes.

3. Access the fields only | Provide public setter and getter
through the methods of | methods to modify and view the fields

their current class. values.

http://www.tutorialspoint.com/java/java encapsulation.htm

http://www.tutorialspoint.com/java/java_encapsulation.htm

Refactoring Spot: Access Modifiers

e Java provides a number of access modifiers to set access levels
for classes, fields, methods and constructors.

ne package, the default. No modifiers needed.
ne class only (private).

he world (public).

he package and all subclasses (protected).

http://www.tutorialspoint.com/java/java modifier types.htm

http://www.tutorialspoint.com/java/java_modifier_types.htm

Refactoring Spot: Access Modifiers

e Java provides a number of access modifiers to set access levels
for classes, fields, methods and constructors.

* The four access levels are:
— Visible to the package, the default. No mgdifiers needed.

Visible to the class only (private). We will focus on public and
Visible to the world (public). e

— Visible to the package and all subclasses (protected).

http://www.tutorialspoint.com/java/java modifier types.htm

http://www.tutorialspoint.com/java/java_modifier_types.htm

Refactoring Spot : Access Modifiers

public class Spot{ Encapsulation step 1 is complete;
float xCoord, yCoord; | 5| fields, constructors and methods
float diameter; are all in a single unit, called Spot.
int red, green, blue;

We just changed the\class access level to public

Spot() (default is package).

{

}

// other constructor

void display(){
ellipse(xCoord, yCoord, diameter, diameter);

}

// move method...
// colour methods...

} Filename: Spot

Refactoring Spot :

Access Modifiers

public class Spot{
float xCoord, yCoord;
float diameter;
int red, green, blue;

Spot()
{
}

// other constructor
void display(){

However, as the default access level is package
—> our methods and fields are all package level
access.

Problem: this breaks Encapsulation step 2
i.e. the fields of a class should be private.

ellipse(xCoord, yCoord, diameter, diameter);

}

// move method...
// colour methods...

Refactoring Spot: Access Modifiers

public class Spot{
private float xCoord, yCoord;

private float diameter;
private int red, green, blue;

Spot() To fix Encapsulation step 2,
{ we declare all the fields with private access.
} '

// other constructor
void display(){
ellipse(xCoord, yCoord, diameter, diameter);
}
// move method...
// colour methods...

Access Modifiers

PROBLEM: You have a garden and it is public.
Anyone can take the properties of the
garden when they want.

http://www.evinw.com/w/

http://www.evinw.com/w/

Access Modifiers

PROBLEM: You have a garden and it is public.
Anyone can take the properties of the
garden when they want.

SOLUTION? Put a high fence around my garden, now it
is safe! But waite, | can no longer access my own garden.

http://www.evinw.com/w/

http://www.evinw.com/w/

Refactoring Spot 7.0: Access Modifiers

public class Spot{

private ;:Oat Z.Coord, y.Coord; The private fields are not viewable or
private float diameter; updatable outside the class Spot.

private int red, green, blue;
//constructors...

//display method...

// move method...

// colour methods... _ |
SOLUTION? Put a high fence around my garden, now it
} is safe! But waite, | can no longer access my own garden.

Other classes don’t know these exist.

http://www.evinw.com/w/

http://www.evinw.com/w/

Refactoring Spot : Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

http://www.evinw.com/w/

http://www.evinw.com/w/

Refactoring Spot 2: Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

Setters and Getters to Safeguard Data

Requester

Set Property Outside
Get Property Requester

http://www.evinw.com/w/

http://www.evinw.com/w/

Refactoring Spot 2: Setters and Getters

SOLUTION: Hire a private guard and give him rules
on who is able to access the garden. Anyone wanting
to use the garden must get permission from guard.
garden is now safe and accessible.

Encapsulation Step 3:

Setters and Getters to Safeguard Data

Set Property
Get Property

Outside
Requester

Provide public setter
and getter methods to
modify and view the
fields values.

http://www.evinw.com/w/

Requester

http://www.evinw.com/w/

Refactoring Spot 2: Getters

public class Spot{
private float xCoord, yCoord;
private float diameter;
private int red, green, blue;

//constructors...
//display method...
// move method...
// colour methods...

public float getDiameter(){
return diameter;

}

public float getXCoord(){
return xCoord;
} public int getGreen(){
return green;
public float getYCoord(){ }
return yCoord;

} public int getBlue(){
return blue;
public int getRed(){ }
return red;
} } //end Spot class

Refactoring Spot 2: Setters

public void setXCoord (float xCoord){
this.xCoord = xCoord;

}

public class Spot{
private float xCoord, yCoord;
private float diameter;

BRI (e (TR, Bllie public void setYCoord (float yCoord){

this.yCoord = yCoord;
}

//constructors...
//display method...

// move method...

// colour methods...
// assessor methods...

public void setRed (int red){
this.red = red;

}

public void setGreen (int green){

public void setDiameter (float diameter){)
this.green = green;

this.diameter = diameter;

) }

public void setBlue (int blue){

Spot Class — Version 2

Spot sp;
class Spot{
void setup() float xCoord, yCoord;
{ float diameter;
size (100,100); int red, green, blue;
noStroke();
sp = new Spot(33, 50, 30); // constructors...
} // display method...
// colour methods...
void draw() // move methods...
{
background(0);
sp.colour(255, 0, 0); Before refactoring,
sp.diameter = 30000; we directly accessed the diameter field...
sp.display(); this broke Encapsulation rules.
}

Source: Reas & Fry (2014)

Refactoring Spot 2 — getters and setters
public class Spot{

Spot sp; private float xCoord, yCoord;
’ < private float diameter; _——>
void setup() private int red, green, blue;

{
size (100,100); // constructors...
noStroke(); // display method...
sp = new Spot(33, 50, 30); // colour methods...

} // move methods...

//getter methods...

void draw() //setter methods...

{ </public void setDiameter (float diameter) {
background(0); ~—__this.diameter = diameter;
sp.colour(255, 0, 0); }

Sp-setDiameter(30000); i

sp.display(J; . :
Now we update via the appropriate setter

}

Questions?

References

* Reas, C. & Fry, B. (2014) Processing — A Programming
Handbook for Visual Designers and Artists, 2" Edition, MIT
Press, London.

