
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Location & Geocoding

Android Google Services"
Part 2

Google Services - Part 2 2!

Google Services Overview

3!Google Services - Part 2

❑ Overview of Google Play Services and Setup
❑ Detailed look at

■  Google+ Sign-in and Authentication (Part 1)
■  Location & Geocoding (Part 2)
■  Google Maps (Part 3)

Google Services Overview

4!Google Services - Part 2

❑ Detailed look at

■  Location & Geocoding (Part 2)

Agenda *
❑ Finding your Location with Location-Based Services

(LBS) & the Fused Location Provider
❑ Overview of GeoFencing & Activitiy Recognition

Google Services - Part 2 5!

Introduction
❑ One of the defining features of mobile phones is their portability,

so it’s not surprising that some of the most enticing Android
features are the services that let you find, contextualize, and
map physical locations
■  Using Location-Based Services / Fused Location Provider

⬥  you can find the device’s current location (GPS, Network Provider etc.)
⬥  send notifications when the device’s location is ‘near’ some other location, (via proximity alerts or

GeoFencing)
■  Using Google Maps (Part 3) you can

⬥  create map-based Activities as a UI element with full access, allowing you to zoom in/out/pan, control
display settings etc.

⬥  using Markers, you can annotate the map and handle touch/tap events

Google Services - Part 2 6!

Overview of Location-Based Services
❑ Location-based services use real-time location data from a

mobile device or smartphone to provide information,
entertainment, or security.

❑ Location-Based services are available on most smartphones,
and a majority of smartphone owners use location-based
services.

❑ Many popular applications integrate location-based services.
Examples include
■  Google Maps, TripAdvisor, Starbucks, The Weather

Channel, Navigation, Facebook Places, CoffeeMate J
Google Services - Part 2 7!

Overview of Location Providers
❑ GPS is accurate, but

■  it only works outdoors
■  it quickly consumes battery power
■  it doesn't return the location quickly

❑ Android’s Network (Fused) Location Provider determines user
location using Cell Towers and Wi-Fi signals. It is less
accurate than GPS, but
■  it works indoors and outdoors
■  it responds faster
■  and it uses less battery power

Google Services - Part 2 8!

The Fused Location Provider
❑ The location APIs in Google Play services contains a

fused location provider
❑ The fused location provider manages the underlying

location technology and provides a simple API that
■  allows you to specify requirements at a high level, like

high accuracy or low power
■  optimizes the device’s use of battery power

Google Services - Part 2 9!

Fused Location Provider
❑ The goal of Fused Location Provider (‘Fused’) is to lessen the

workload of developers who want to interact with location
information

❑ Provides a single programmable interface
❑ Google does the hard work in sourcing location, simply

feeding it to developers’ applications (via Google Play
Services)
■  Fused brings together cellular, WiFi, GPS, and Sensor data

Google Services - Part 2 10!

Fused Location Provider

❑  Simplified API
■  3 main aspects were worked on

⬥  Speed
⬥  Accuracy
⬥  Coverge

Before	Android	4.2	 A.er	

Google Services - Part 2 11!

Fused Location Provider & Priority Modes
❑  A user can define one of the 3 main fused location provider modes by

setting priority:
§  HIGH_ACCURACY, BALANCED_POWER or NO_POWER

❑ During a Google IO presentation a chart was presented showing effect
of different priorities of the recognition algorithm as tested multiple times
on a Galaxy Nexus.

Google Services - Part 2 12!

Complexity – Sensor Usage

13!Google Services - Part 2

Challenges in Determining User Location
❑ Multitude of location sources

GPS, Cell-ID, and Wi-Fi can each provide a clue to users location.
Determining which to use and trust is a matter of trade-offs in accuracy,
speed, and battery-efficiency.

❑ User Movement
Because the user location changes, you must account for movement by
re-estimating user location every so often.

❑  Varying Accuracy
Location estimates from each location source are not consistent in their
accuracy. A location obtained 10 seconds ago from one source might
be more accurate than the newest location from another or same
source.

Google Services - Part 2 14!

https://developer.android.com/training/location/index.html

Part 2!
Location & Geocoding!

Making Your App Location-Aware!

Overview
❑ One of the unique features of mobile applications is location

awareness. Mobile users take their devices with them
everywhere, and adding location awareness to your app offers
users a more contextual experience.

❑ The location APIs available in Google Play Services facilitate
adding location awareness to your app with automated
location tracking, geofencing, and activity recognition.

Google Services - Part 2 16!

Overview - Location-Based Services in Android
❑  Android provides two location frameworks

■  in package android.location	
■  in package com.google.android.gms.location	
(part of Google Play Services)

❑  The framework provided by Google Play Services is now the preferred
way to add location-based services to an application.
■  simpler API − greater accuracy
■  more power efficient − more versatile

Note that some classes in package android.location!
are still used by the Google Play Services API.!

Google Services - Part 2 17!

Location Awareness - Your “Need to Know”
1.  Getting the Last Known Location

■  how to retrieve the last known location of an Android device, which is usually
equivalent to the user's current location.

2.  Changing Location Settings
■  how to detect and apply system settings for location features.

3.  Receiving Location Updates
■  how to request and receive periodic location updates.

4.  Displaying a Location Address
■  how to convert a location's latitude and longitude into an address (reverse geocoding).

5.  Creating and Monitoring Geofences
■  how to define one or more geographic areas as locations of interest, called geofences,

and detect when the user is close to or inside a geofence.

18!Google Services - Part 2

1. Getting the Last Know Location
❑ Using the Google Play services location APIs, your app can request the

last known location of the user's device.
❑  In most cases, you are interested in the user's current location, which is

usually equivalent to the last known location of the device.
❑  Specifically, use the fused location provider to retrieve the device's last

known location. The Steps involved are :
■  Setup Google Play Services (should be done already…)
■  Specify App Permissions
■  Connect to Google Play Services
■  Get the Users Last Known Location

19!Google Services - Part 2

1. Getting the Last Know Location *

20!Google Services - Part 2

1. Getting the Last Know Location *

21!Google Services - Part 2

1. Getting the Last Know Location *

22!Google Services - Part 2

1. Getting the Last Know Location *

23!Google Services - Part 2

2. Changing Location Settings *

24!Google Services - Part 2

2. Changing Location Settings *

25!Google Services - Part 2

3. Receiving Location Updates
❑  If your app can continuously track location, it can deliver more

relevant information to the user.
■  For example, if your app helps the user find their way while walking or

driving, or if your app tracks the location of assets, it needs to get the
location of the device at regular intervals. As well as the geographical
location (latitude and longitude), you may want to give the user further
information such as the bearing (horizontal direction of travel), altitude,
or velocity of the device.

■  This information, and more, is available in the Location object that your
app can retrieve from the fused location provider.

26!Google Services - Part 2

3. Receiving Location Updates *

27!Google Services - Part 2

3. Receiving Location Updates *

28!Google Services - Part 2

3. Receiving Location Updates *

29!Google Services - Part 2

3. Receiving Location Updates *

30!Google Services - Part 2

3. Receiving Location Updates *

31!Google Services - Part 2

3. Receiving Location Updates

32!Google Services - Part 2

3. Receiving Location Updates

33!Google Services - Part 2

UPDATE : Google Play Services Version 11 (06/17) *

❑ We’ll use some of these classes in the Labs"
 34!Google Services - Part 2

Using FusedLocationProviderClient	*

35!Google Services - Part 2

❑ Create a new instance of FusedLocationProviderClient for use in an
Activity

❑ Create our Callback & Location Request (next Slide)

Using FusedLocationProviderClient	*

36!Google Services - Part 2

Using FusedLocationProviderClient	*

37!Google Services - Part 2

❑ Requesting Location Updates
❑  A Class used to run a message loop for a thread.
❑  Transforms a normal thread, which terminates when its run() method

returns, into something that runs continuously

4. Displaying a Location Address
❑ Getting the Last Known Location and Receiving Location

Updates describe how to get the user's location in the form
of a Location object that contains latitude and longitude
coordinates.

❑ Although latitude and longitude are useful for calculating
distance or displaying a map position, in many cases the
address of the location is more useful.
■  For example, if you want to let your users know where they are or

what is close by, a street address is more meaningful than the
geographic coordinates (latitude/longitude) of the location.

38!Google Services - Part 2

4. Displaying a Location Address
❑ Using the Geocoder class in the Android framework location

APIs, you can convert an address to the corresponding
geographic coordinates. This process is called geocoding.
Alternatively, you can convert a geographic location to an
address. The address lookup feature is also known as
reverse geocoding.

❑ The getFromLocation() method to convert a geographic
location to an address. The method returns an estimated
street address corresponding to a given latitude and
longitude.

39!Google Services - Part 2

4. Displaying a Location Address
❑ The steps necessary are as follows:
■  Get a Geographic Location
■  Define an Intent Service to Fetch the Address

o  Define the Intent Service in your App Manifest
o  Create a Geocoder
o  Retrieve the street address data
o  Return the address to the requestor

■  Start the Intent Service
■  Receive the Geocoding Results

❑ For a Full discussion (and examples) visit "
https://developer.android.com/training/location/display-address.html

40!Google Services - Part 2

Example: Translating a Location to an Address"
(Reverse Geocoding)

private String getAddressFromLocation(Location location) {"
 Geocoder geocoder = new Geocoder(getActivity());"
"
 String strAddress = "";"
 Address address;"
 try {"
 address = geocoder"
 .getFromLocation(location.getLatitude(), location.getLongitude(), 1)"
 .get(0);"
 strAddress = address.getAddressLine(0) +"
 " " + address.getAddressLine(1) +"
 " " + address.getAddressLine(2);"
 }"
 catch (IOException e) {"
 }"
"
 return strAddress;"
}					

Google Services - Part 2 41!

Google Services - Part 2 42!

Example: Translating a Location to an Address"
(Reverse Geocoding)

Translating an Address to a Location (Geocoding)

❑ Create a string with the address
String	addressStr	=	
				"171	Moultrie	Street,	Charleston,	SC,	29409";	

❑ Create a Geocoder instance
Geocoder	geocoder	=	new	Geocoder(this);	

❑ Call the Geocoder method getFromLocationName()	
List<Address>	addresses	=	
				geocoder.getFromLocationName(addressStr,	1);	

❑ Retrieve the latitude and longitude from the first address
Address	address	=	addresses.get(0);	
//	call	address.getLatitude()	and	
//	address.getLongitude()	as	needed	

Google Services - Part 2 43!

Example: Geocoding

Google Services - Part 2 Slide 44!

5. Creating and Monitoring Geofences

45!Google Services - Part 2

❑ Geofencing combines awareness of the user's current
location with awareness of the user's proximity to locations
that may be of interest.

❑ To mark a location of interest, you specify its latitude and
longitude. To adjust the proximity for the location, you add a
radius. The latitude, longitude, and radius define a geofence,
creating a circular area, or fence, around the location of
interest.

5. Creating and Monitoring Geofences

46!Google Services - Part 2

❑ You can have multiple active geofences, with a limit of 100
per device user.

❑ For each geofence, you can ask Location Services to send
you entrance and exit events, or you can specify a duration
within the geofence area to wait, or dwell, before triggering an
event.

❑ You can limit the duration of any geofence by specifying an
expiration duration in milliseconds. After the geofence expires,
Location Services automatically removes it.

5. Creating and Monitoring Geofences

47!Google Services - Part 2

❑ Entrance
❑ Dwell
❑ Exit events

5. Creating and Monitoring Geofences

48!Google Services - Part 2

❑ The steps necessary are as follows:
■  Set up for Geofence Monitoring
■  Create and Add Geofences

o  Create geofence objects
o  Specify geofences and initial triggers
o  Define an Intent for geofence transitions
o  Add geofences

■  Handle Geofence Transitions
■  Stop Geofence Monitoring

❑ For a Full discussion (and examples) visit "
https://developer.android.com/training/location/geofencing.html

Testing Google Play Services
To test an application using the Google Play services SDK,
you must use either
❑ A compatible Android device that runs Android 2.3 or

higher and includes Google Play Store
❑ An Android emulator (virtual device) that runs the Google

APIs platform based on Android 4.2.2 or higher
(Genymotion is a good one to use and Android Studio
has improved quite a lot in the last few releases – next
few slides)

Google Services - Part 2 49!

Aside : Android Studio Emulator Setup

1!

2! 3!

Google Services - Part 2 50!

Aside : Genymotion Emulator Setup

1!
2!

3!
Google Services - Part 2 51!

Example: Using LocationListener	*

Google Services - Part 2 52!

Example: Using LocationListener	(continued)

Google Services - Part 2 53!

Key Location Classes and Interfaces
In package android.location	
❑ Class Location	

■  represents a geographic location sensed at a
particular time

❑ Class Address	
■  represents an address as a set of strings describing a

location.
❑ Class Geocoder	

■  translates between locations and addresses

Google Services - Part 2 54!

Key Location Classes and Interfaces (continued)

In package com.google.android.gms.location	
❑ Class LocationServices	

■  main entry point for location services integration
❑  Interface FusedLocationProviderApi	

■  main entry point for interacting with the fused location provider
❑  Interface LocationListener	

■  receives notifications when the location has changed
❑ Class LocationRequest	

■  contains quality-of-service parameters for requests to the
FusedLocationProviderApi	

Google Services - Part 2 55!

Location Services on an Emulator
❑ A virtual device (emulator) does not have GPS or real

location providers, so it uses a “mock” GPS provider
that always returns the same position unless it is
changed manually. (Like we can using Genymotion)

❑ If you’re not using Genymotion/Android Studio, the
location on the emulator can be changed using
■  the Android Device Monitor
■  the “geo” command in the emulator console; e.g.,"

geo	fix	-79.960138	32.797917	

Google Services - Part 2 56!

Using the Android Device Monitor

Google Services - Part 2 57!

Using the Android Device Monitor

Emulator Control
Panel!

Google Services - Part 2 58!

Using the Android Device Monitor

Emulator Control
Panel!

Google Services - Part 2 59!

Using the Emulator Control Panel
❑  The Emulator Control panel can send simulated location data in three

different ways:
■  Manually send individual longitude/latitude coordinates to the device.
■  Use a GPX file describing a route for playback to the device.
■  Use a KML file describing individual place marks for sequenced

playback to the device.
❑  See the following for details of GPX and KML files:

■  GPX: The GPS Exchange Format"
http://www.topografix.com/gpx.asp

■  KML Tutorial"
http://code.google.com/apis/kml/documentation/kml_tut.html

Google Services - Part 2 60!

Setting a Mock Location on an Emulator

Emulator Control
Panel!

Google Services - Part 2 61!

Setting a Mock Location Using the “geo” Command
To send mock location data from the command line:
❑  In Android Studio, click on the “Terminal” tab "

near the bottom.
❑ Connect to the emulator console:

 telnet	localhost	5554	
❑  Send the location data:

 geo	fix	-121.45356	46.51119	4392

5554 is the console port!
(check emulator screen)!

Note that a telnet client is not installed automatically in Windows. Use!
Control Panel g Programs and Features g Turn Windows features on or off!

The “geo fix” command accepts a longitude and latitude!
in decimal degrees, and an optional altitude in meters.!

Google Services - Part 2 62!

Activity Recognition – (More in Video Next Slide)
❑ Makes it easy to check the user’s current activity "

- still, walking, cycling, and in-vehicle, with very efficient use of
the battery.

❑ Sensor data to find the type of action the user is performing

Google Services - Part 2 63!

General Usage

Google Services - Part 2 64!

All Available via Google Play Services

Google Services - Part 2 65!

66!Google Services - Part 2

CoffeeMate 6.0

Code
Highlights

MapsFragment – interfaces/instance variables *
❑  Here we declare the interfaces "

our custom MapFragment
(MapsFragment) implements.

❑  Interfaces for Volley & Location
Updates/Callbacks.

❑  Variables to keep track of "
location requests, the map etc.

67!Google Services – Part 2

GoogleApiClient Setup *

❑ Here we build our GoogleApiClient	 specifying the LocationServices
API.

❑  It’s actually common practice to ‘rebuild’ your api client (can actually
improve performance)

68!Google Services – Part 2

MapsFragment – onResume() *
❑  Acquire GoogleMap (automatically initializes

the maps system and the view)
❑  Start Location Updates
❑  Set Location if necessary (e.g. on emulator)

❑ We’ll look at the other method call
later on when working with Google
Maps

69!Google Services – Part 2

MapsFragment – Permissions *

❑ Checking to see if Location & Camera permissions are allowed
❑ Requesting Location & Camera permissions

70!Google Services – Part 2

MapsFragment – Permissions *
❑ Retrieving permission

status
❑ Updating the User and

starting location updates
on permission granted

71!Google Services – Part 2

Relevant Links
❑  Location APIs

https://developer.android.com/google/play-services/location.html
❑  Setting Up Google Play Services

https://developer.android.com/google/play-services/setup.html
❑  Getting the Last Known Location

http://developer.android.com/training/location/retrieve-current.html
❑  Receiving Location Updates

http://developer.android.com/training/location/receive-location-updates.html
❑  Displaying a Location Address

http://developer.android.com/training/location/display-address.html

Google Services - Part 2 72!

Questions?!

Google Services - Part 2 73!

