
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Google+ Sign-in

Android Google Services"
Part 1

Google Services - Part 1 2!

Google Services Overview *
❑ Overview of Google Play Services and Setup
❑ Detailed look at

■  Google+ Sign-in and Authentication (Part 1)
■  Location & Geocoding (Part 2)
■  Google Maps (Part 3)

Google Services - Part 1 3!

Google Services Overview
❑ Overview of Google Play Services and Setup
❑ Detailed look at

■  Google+ Sign-in and Authentication (Part 1)

Google Services - Part 1 4!

General Overview – What is it?
❑ Google Play Services is "a single place that brings in all

of Google's APIs on Android 2.2 and above."
❑ With Google Play Services, your app can take advantage

of the latest, Google-powered features such as Maps,
Google+, and more, with automatic platform updates
distributed as an APK through the Google Play store.

❑ This makes it faster for users to receive updates and
easier for developers to integrate the newest that Google
has to offer.

5!Google Services - Part 1

Overview – How it Works (Google Play Services)

6!Google Services - Part 1

❑ The Google Play
services APK on user
devices receives
regular updates for
new APIs, features,
and bug fixes.

Overview – How it Works (Google API Client)

7!Google Services - Part 1

Overview – What You Get

8!Google Services - Part 1

https://developers.google.com/android/guides/overview!

Setting Up !
Google Play Services!

Google Services - Part 1 9!

Download Google Play Services (Android SDK Manager)

Google Services - Part 1 Slide 10!

Setting Up Google Play Services"
(https://developer.android.com/google/play-services/setup.html)

❑ Make sure that the Google Play services SDK is installed, as
shown on the previous slide.

❑ Create an application using Android Studio.
❑ In Android Studio under “Gradle Scripts”, edit the build.gradle

file for “Module: app”"
(not the build.gradle file for the project)
Under dependencies (near the bottom), add the following line at the end:
compile	'com.google.android.gms:play-services-location:9.8.0'	

❑ Save the changes and click “Sync Project with Gradle Files” in the
toolbar, or click on menu item"
Tools g Android g Sync Project with Gradle Files.

Google Services - Part 1 11!

Setting Up Google Play Services (continued)

❑ When we’re finished CoffeeMate, our ‘dependencies’ will
look something like this (version numbers may differ)…	

Google Services - Part 1 12!

Setting Up Google Play Services (continued)

❑ Edit file AndroidManifest.xml and add the following tag as
a child of the <application> element:

<meta-data	android:name="com.google.android.gms.version"	
											android:value="@integer/google_play_services_version"/>	

Note: You can ignore instructions about creating a ProGuard!
exception if you are building in debug mode (i.e., not release mode).!

Google Services - Part 1 13!

Testing Google Play Services
To test an application using the Google Play services SDK,
you must use either
❑ A compatible Android device that runs Android 2.3 or

higher and includes Google Play Store
❑ An Android emulator (virtual device) that runs the Google

APIs platform based on Android 4.2.2 or higher
(Genymotion is a good one to use – Part 2)

Google Services - Part 1 14!

Popular APIs (100+ in total) *

Slide 15!Google Services - Part 1

Popular APIs (100+ in total) *

Slide 16!Google Services - Part 1

Part 1!
Google+ Sign-in!

Google Services - Part 1 17!

Introduction
❑ With the Google+ Platform for Android, you can allow application users

to sign in with their existing Google+ accounts.
❑  It helps you in knowing your end users and providing them with a

better enriched experience in your application.
❑  As soon as a user allows your app to use Google+ Sign In, you can

easily get info about the user and people in the users circles.
❑  You can also get access to post on Google+ on the users behalf.

Overall, it is quick and easy way to engage end users in your application.

18!Google Services - Part 1

Google+ Sign-in Requirements
❑ For integrating Google+ Sign-in into your Android

Application, we need to complete the following :

1.  Enable Google+ API on The Developers Console and
create credentials for your application authentication

2.  Configuring Google Play Services in Android Studio
3.  Create your Android Application with Google+ Sign-in

19!Google Services - Part 1

1. Enable Google+ API on The Developers Console
① Go to Google Developers Console
②  If you don’t have any existing projects, Create Project.
③ Select your project and choose ENABLE API on the

menu.
④ Browse for Google+ API (under Social APIs) and turn

ON its status by accepting terms and conditions.

Do not close developers console yet, you’ll still use it to
generate your authentication key in the next few steps.

20!Google Services - Part 1

1. Enable Google+ API on The Developers Console

21!Google Services - Part 1

1. Enable Google+ API on The Developers Console
⑤ Generate your SHA1 fingerprint

1.  You can either use the java keytool utility, like so
keytool -list -v -keystore "%USERPROFILE%\.android\debug.keystore" -alias androiddebugkey -storepass android -keypass android

22!Google Services - Part 1

1. Enable Google+ API on The Developers Console
⑤ Generate your SHA1 fingerprint

1.  You can
1.  Click on your package and choose New -> Google -> Google

Maps Activity
2.  Android Studio redirects you to google_maps_api.xml with your

SHA1

This gives you A LOT of extra ‘bolierplate’ code that you might not
even need (if you’re not using maps)

23!Google Services - Part 1

1. Enable Google+ API on The Developers Console
⑤ Generate your SHA1 fingerprint

1.  Or you can
1.  Open/View Your Project
2.  Click on Gradle (From Right Side Panel, you will see Gradle Bar)
3.  Click on Refresh (Click on Refresh from Gradle Bar, you will see List Gradle

scripts of your Project)
4.  Click on Your Project (Your Project Name from List (root))
5.  Click on Tasks
6.  Click on android
7.  Double Click on signingReport (You will get SHA1 and MD5 in Run Bar)"

This is probably the simplest approach with minimal fuss! IMHO

24!Google Services - Part 1

1. Enable Google+ API on The Developers Console

25!Google Services - Part 1

1. Enable Google+ API on The Developers Console
⑥ Navigate to Credentials -> Create Credentials -> API Key ->

Android Key,
⑦  It will ask to Configure consent screen if not configured

before. Fill in the necessary information and save. It will
redirect you back to the creation page.

⑧ Give your Key a Name and Add package name and fingerprint
⑨ Enter your package name and your SHA1 fingerprint

(generated previously) and click Create
You now have your API Key which you can use in your Android

Apps to use the Google APIs
26!Google Services - Part 1

1. Enable Google+ API on The Developers Console

27!Google Services - Part 1

1. Enable Google+ API on The Developers Console

28!Google Services - Part 1

2. Configure Google Play Services
❑ Already Done! (from previous slides…)

29!Google Services - Part 1

3. Create your Android App (CoffeeMate)
❑ You’ll cover this in the Labs, but we’ll have a look at

some of the code next

30!Google Services - Part 1

Steps in Integrating Google Sign-In into your App
❑ Import classes/interfaces.
❑ Declare that the activity implements callback interfaces.
❑ Declare/build GoogleApiSignInOptions object
❑ Declare/build GoogleApiClient object.
❑ Implement callback interfaces.
❑ Implement methods onStart() and onStop() (and

possibly other lifecycle methods such as onPause()"
and onResume()) to gracefully handle connections to
Google Play Services

31!Google Services - Part 1

Integrating Google Sign-In into Your Android App

32!Google Services - Part 1

https://developers.google.com/identity/sign-in/android/sign-in!
!

Configure Google Sign-In & GoogleApiClient object

33!Google Services - Part 1

Configure Google Sign-In & GoogleApiClient object *

34!Google Services - Part 1

Aside – Connecting to Google Drive Example *

35!Google Services - Part 1

Add the Google Sign-In button to your app *

36!Google Services - Part 1

Start the sign-in flow

37!Google Services - Part 1

Start the sign-in flow

38!Google Services - Part 1

Start the sign-in flow

39!Google Services - Part 1

Start the sign-in flow *

40!Google Services - Part 1

Key Interfaces/Classes for Google Sign-In"
(in package com.google.android.gms.auth.api.signin)

❑  GoogleSignInAccount	

❑  GoogleSignInOptions.Builder	

41!Google Services - Part 1

Key Interfaces/Classes for Google Sign-In"
(in package com.google.android.gms.common.api)

❑  GoogleApiClient	

❑  GoogleApiClient.Builder	

42!Google Services - Part 1

Key Interfaces/Classes for Google Sign-In"
(in package com.google.android.gms.common.api)

❑  GoogleApiClient.ConnectionCallbacks	

❑  GoogleApiClient.OnConnectionFailedListener	

43!Google Services - Part 1

Key Interfaces/Classes for Google Sign-In"
(in package com.google.android.gms.common.api)

❑  GoogleApiClient	
■  main entry point for Google Play services integration

❑  GoogleApiClient.ConnectionCallbacks	
■  provides callbacks that are called when the client is connected or disconnected

from the service
■  abstract methods:

void	onConnected(Bundle	connectionHint)	
void	onConnectionSuspended(int	cause)	

❑  GoogleApiClient.OnConnectionFailedListener	
■  provides callbacks for scenarios that result in a failed attempt to connect the

client to the service
■  abstract method:

void	onConnectionFailed(ConnectionResult	result)	
44!Google Services - Part 1

45!Google Services - Part 1

CoffeeMate 5.0

Code
Highlights

CoffeeMateApp (Application) *
❑ Here we declare our
GoogleSignInOptions and
GoogleApiClient
references (and other
variables) to store users
Google+ info.

❑ We populate these objects in
our ‘Login’ process.

❑  Volley Request Queue also
set up here (see the labs for
further details).

46!Google Services - Part 1

Login (Activity) *
❑  Our Login Activity

implements the relevant
interfaces

❑  Here we ‘Build’ our sign in
options

47!Google Services - Part 1

Login (Activity) *
❑  Build our client with the

specific sign in options
and the APi we want to
use - (Google Sign-In)

❑  Try and sign in to
Google

48!Google Services - Part 1

Login (Activity) *
❑  If sign in result ok,

handle it.

❑  On successful sign in,
get the users Google
info

❑  Take the user to the
‘Home’ screen

49!Google Services - Part 1

CoffeeFragment (extracts) *
❑  Setting up our ‘Swipe

Refresh’

❑  Retrieving all the
coffees from the
server

50!Google Services - Part 1

CoffeeFragment (extracts) *
❑  Attach listener &

retrieve coffees

❑  Detach listener

❑  Do we need ‘getAll()’
on the previous slide?

51!Google Services - Part 1

CoffeeFragment (extracts) *
❑  Deleting a single

coffee

52!Google Services - Part 1

CoffeeFragment (extracts) *
❑  Deleting multiple

coffees

53!Google Services - Part 1

Add (Fragment) *
❑  Creating a new coffee

object

❑  Note the extra
‘Google’ parameters

❑  Updating our coffee
data on the server

54!Google Services - Part 1

Edit (Fragment) *
❑  ID passed from List

(now a string value)

❑  Retrieving coffee data
from server

❑  Saving our coffee data
to the server

55!Google Services - Part 1

CoffeeMate 5.0+

56!Google Services - Part 1

Relevant Links
❑  Setting Up Google Play Services

https://developer.android.com/google/play-services/setup.html
❑  Integrating Google+ Sign In into your Android Application"

http://androidsrc.net/integrating-google-plus-sign-in-into-your-android-application/
❑  Official Docs
❑  https://developers.google.com/identity/sign-in/android/sign-in

Google Services - Part 1 57!

Questions?!

Google Services - Part 1 58!

