Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

Android Persistence,
Multithreading & Networking

Agenda & Goals

1 Be aware of the different approaches to data persistence and
multithreading in Android Development
1 Be able to work with the SQLiteOpenHelper and

SQLiteDatabase classes to implement an SQLite
database on an Android device (to manage our Coffees)

J Be able to work AsyncTasks and Volley to execute
pbackground tasks and make API calls

CoffeeMate.4.0
Using an SQLite Database

Persistence, Multithreading & Networking

Main Idea — why do we need Persistence”?

J Android can shut down and restart your app
- When you rotate the screen
- When you change languages

- When your app is in background and Android is short
on Memory

- When you hit the Back button
J Problem
- You risk losing user changes and data
- Solutions 7?7

Solutions o
J Android provides several options for you to save persistent

application data.

J The solution you choose depends on your specific needs, such
as whether the data should be private to your application or
accessible to other applications (and the user) and how much
space your data requires.

J Android provides a way for you to expose your private data to

other applications — with a Content Provider.

A content provider is an optional component that exposes read/write access to
your application data, subject to whatever restrictions you want to impose.

Data Storage Solutions *

d Shared Preferences
. Store private primitive data in key-value pairs.

d Internal Storage
- Store private data on the device memory.

d External Storage
- Store public data on the shared external storage.

1 SQLite Databases
. Store structured data in a private database.

 Network Connection
. Store data on the web with your own network server.

Data Storage Solutions *

1 Bundle Class

- A mapping from String values to various Parcelable types
and functionally equivalent to a standard Map.

- Does not handle Back button scenario. App restarts from
scratch with no saved data in that case.

d File

- Use java.io.* to read/write data on the device's internal
storage.

o | CoffeeMate.4.0> B3 app> (| src> (| main>

CoffeeMate 4.0 — Project Structure

P e)

OV

 —— — 15 java source files in total
A SCCLLLC S —& Our Database classes

© & AddFragment
© % CoffeeFragment

(© & EditFragment Xm |ayo UtS
(© & HelpFragment

(© ® SearchFragment

i modes = XMl menu
> &ie.in(androidTest) /

» [Eldie.cm (test)

|]

o - Xml files for resources

v Z\';out \
Elactivity_home.xml ‘ fl -t.) fl |
[& app_bar_home.xml u Xm CO n Ig u ra IO n I e
[& coffeerow.xml
& content_home.xml
[& fragment_add.xml /
B fragment_edit.xml
& fragment_help.xml
B fragment_home.xml
[& fragment_search.xml
@ info.xml
[& nav_header_home.xml
& splash.xml
> kmenu /
> [0 nTtprITap
» [values

» (@ Gradle Scripts Persistence, Multithreading & Networking

ts

rian

ldea

1 Goal

- Enhance CoffeeMate.3.0 by managing the Coffees in an
SQLite Database and improving the Ul/UX with a Nav Drawer

J Approach

- Implement/extend specific classes to add the database
functionality to the app — Practical Lab 5

Database Programming in Android *

d Android provides full support for SQI—ite public class DictionaryOpenHelper extends SQLiteOpenHelper {
databases. Any databases you create will be
private static final int DATABASE_VERSION = 2;
accessible by name to any class in the private static final String DICTIONARY_ TABLE_NAME = "dictionary";
private static final String DICTIONARY TABLE_CREATE =
"CREATE TABLE " + DICTIONARY_TABLE_NAME + " (" +
KEY_WORD + " TEXT, " +
KEY_DEFINITION + " TEXT);";

application, but not outside the application.

d The recommended method to create a new

SQLite database is to create a subclass of
DictionaryOpenHelper(Context context) {

SQtheOpenHelper‘ and override the super(context, DATABASE NAME, null, DATABASE_VERSION);

onCreate() method, in which you can }

execute a SQLite command to create tables in @verride

public void onCreate(SQLiteDatabase db) {
db.execSQL(DICTIONARY_TABLE_CREATE);

the database.

d For example: }

Database Programming in Android

J

You can then get an instance of your SQLiteOpenHelper implementation using the constructor
you've defined. To write to and read from the database, call getWritableDatabase() and
getReadableDatabase(), respectively. These both return a SQLiteDatabase object that
represents the database and provides methods for SQLite operations.

You can execute SQLite queries using the SQLiteDatabase query() methods, which accept
various query parameters, such as the table to query, the projection, selection, columns, grouping,
and others. For complex queries, such as those that require column aliases, you should use
SQLiteQueryBuilder, which provides several convenient methods for building queries.

Every SQLite query will return a Cursor that points to all the rows found by the query. The Cursor is
always the mechanism with which you can navigate results from a database query and read rows
and columns.

Database Programming in Android C,

d With SQLite, the database is a simple disk file. All of the data structures making up a relational database -

tables, views, indexes, etc. - are within this file

d RDBMS is provided through the api classes so it becomes part of your app

L

You can use the SQL you learned in a database module
d You should use DB best practices

Normalize data

Encapsulate database info in helper or wrapper classes

Don’t store files (e.g. images or audio), Instead just store the path string

CoffeeMate - DBDesigner

public class DBDesigner extends SQLiteOpenHelper
{ _ L — Our Table & Column names
public static final String TABLE_COFFEE = "table_coffee";
public static final String COLUMN_ID = "coffeeid"; (fOI’ SQL)
public static final String COLUMN_NAME = “coffeename";
public static final String COLUMN_SHOP = "shop";

public static final String COLUMN_RATING = "rating";
public static final String COLUMN_PRICE = “price";
public static final String COLUMN_FAV = "isfavourite";

private static final String DATABASE_NAME
private static final int DATABASE VERSION

"coffeemate.db";
1;

// Database creation sql statement
private static final String DATABASE_CREATE_TABLE COFFEE = "create table "

+ TABLE_COFFEE + "(" + COLUMN_ID + " integer primary key autoincrement, " .
+ COLUMN_NAME + " text not null," Creat'ng the Table (Or TabIeS)
+ COLUMN_SHOP + " text not null," <
+ COLUMN_PRICE + " double not null,"”
. + COLUMN_RATING + " double not null,"”
| s + COLUMN_FAV + " integer not null);"; //SQLite doesn't support boolean types
public DBDesigner(Context context) { super(context, DATABASE_NAME, null, DATABASE_VERSION); }
@verride Drop the Table (if we change
public void onCreate(SQLiteDatabase database) { database.execSQL(DATABASE _CREATE_TABLE COFFEE); } - the schema)
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
Log.w(DBDesigner.class.getName(),
"Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS " + TABLE_COFFEE);
onCreate(db);
}
}

Persistence, Multithreading & Networking

CoffeeMate - DBManager

public class DBManager {

private SQLiteDatabase database;
private DBDesigner dbHelper;

a

Our database reference

public DBManager(Context context) { dbHelper = new DBDesigner(context); }
Returns a reference to the

public void open() throws SQLException { database created from our
database = dbHelper.getWritableDatabase(); «— .
} SQL string

public void close() { database.close(); }

public void insert(Coffee c) {

ContentValues values = new ContentValues();)

values.put(DBDesigner.COLUMN_NAME, c.name); ContentValues are key/value pairs

values.put(DBDesigner.COLUMN_SHOP, c.shop); - i i

values.put(DBDesigner.COLUMN_PRICE, c.price); that are, used when inserting/

values.put(DBDesigner.COLUMN_RATING, c.rating); uPdatmg databases. Each
\values. put(DBDesigner.COLUMN_FAV, (c.favourite == true) ? 1 : 0)) ContentValue object corresponds to

long insertld = database.insert(DBDesigner.TABLE COFFEE, null, one row in a table

values);

}
public void delete(int id) {...}

public void update(Coffee c) {...}

CoffeeMate — DBManager *

public void delete(int id) {...}
public void update(Coffee c) {...}

public List<Coffee> getAll() {

—_ Arravl 1ct+ ().
Cursor cursor = database.rawQuery("SELECT % FROM "
+ DBDesigner.TABLE_COFFEE, null); W
cursor.moveloFirst(),; \\\\;

This method ‘converts’ a Cursor
object into a Coffee Object

whi 1 n FCastiJ) 1)
Coffee pojo = toCoffee(cursor);
coffees,add(poio):

cursor.moveToNext();

}

// Make sure to close the cursor
cursor.close();

return coffees;

¥
public Coffee get(int id) {...}

public List<Coffee> getFavourites() {...}

f’;:ivate Coffee toCoffee(Cursor cursor) {

Coffee pojo = new Coffee();

pojo.coffeeld = cursor.getInt(0);

pojo.name = cursor.getString(1);

pojo.shop = cursor.getString(2);

pojo.price = cursor.getDouble(3);

pojo.rating = cursor.getDouble(4);

pojo.favourite = (cursor.getInt(5) == 1) ? true : false;

return pojo;
{ /

public void setuplList() {...}

}

Persistence, Multithreading & Networking

A Cursor provides random read-
write access to the resultset
returned by a database query

Other Cursor Functions

J getCo
J getCo
J getCo

J move ToPrevious
J getCount

umnindexOrThrow
umnName
umnNames

J moveToPosition
 getPosition

CoffeeMate.5.0

Multithreading,
Asynclasks & Volley

Background Processes in General o

1 One of the key features of Android (and iPhone) is the ability
to run things in the background

« hreads

¢ Run something in the background while user interacts
with Ul

. Services

¢ Regularly or continuously perform actions that don’t
require a Ul

Threads %

J Recall that Android ensures responsive apps by
enforcing a 5 second limit on Activities

d Sometimes we need to do things that take longer than 5
seconds, or that can be done while the user does
something else

J Activities, Services, and Broadcast Receivers run on the
main application thread

 But we can start background/child threads to do other
things for us

Android Thread Constraints

J Child threads cannot access Ul elements (views); these
elements must (and can only) be accessed through the
main thread

1 So what do you do?

= YOU pass results to the main thread and let it use the
results

U w929

Multithreading — Our Splash Screen e A

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R. layout.splash);

Handler handler = new Handler();
// run a thread after 2 seconds to start the home screen

handler.postDelayed(() - {
// make sure we close the splash screen so the user
// won't come back when it presses back key
finish();

if (!'mIsBackButtonPressed) {
// start the home screen if the back button wasn't pressed already
Intent intent = new Intent(Splash.this, Home.class); xR

Splash.this.startActivity(intent);
}
}, SPLASH DURATION); // time in milliseconds to delay call to~:;;;;55‘.55------~_§_ﬁ>

ddrohan.gitbooks.io

Using the Asynclask class

http://developer.android.com/reference/android/os/AsyncTask.html

d The AsyncTask class allows to perform background operations and
publish results on the Ul thread without having to manipulate threads and/

or handlers.

d An asynchronous task is defined by a computation that runs on a
background thread and whose result is published on the Ul thread.

J An asynchronous task is defined by

3 Generic Types

Params,
Progress,
Result

4 Main States

onPreExecute,
dolnBackground,
onProgressUpdate
onPostExecute.

1 Auxiliary Method

publishProgress

Using the AsyncTask class “

AsyncTask <Params, Progress, Result>

AsyncTask's generic types

Params: the type of the input parameters sent to the task at execution.
Progress: the type of the progress units published during the background computation.

Result: the type of the result of the background computation.

(Not all types are always used by an asynchronous task. To mark a
type as unused, simply use the type Void

Note:

Syntax “string ...” indicates (Varargs) array of String values, similar to “string[]”

Persistence, Multithreading & Networking

Using the Asynclask class

1 onPrekExecute
- 1S Invoked before the execution.

J onPostExecute
IS Invoked after the execution.
4 dolnBackground
- the main operation. Write your heavy operation here.
 onProgressUpdate

- Indication to the user on the current progress. It is
iInvoked every time publishProgress|() is called.

private class MyAsyncTask extends mmifEEEEEEEE EQIE EEEEEE) {] '
protected void onPreExecute() { USIng the

// Runs on the UI thread before doInBackground

. ‘
// Good for toggling visibility of a progress indicator ASynCTaSk ClaSS

progressBar.setVisibility(ProgressBar.VISIBLE); <€—

}

protectpd Bitmap doInBackgroupd(String... ptrings) {
// Some Iong-running task like downloading an image. 22

Bitmap = downloadImageFromUrl(strings[@]);
return someBitmap;

}%
protected void onProgressUpdate(Progress...

// Executes whenever publishProgress is called from doInBgckground
// Used to update the progress indicator :3

progressBar.setProgress(values[0]); <«
 } J

protected void onPostExecyte(Bitmap regult) {

// This method is executed 1in the UIThread
// with access to the result of the long running task Zq—
imageView.setImageBitmap(result); «—
// Hide the progress bar
progressBar.setVisibility(ProgressBar.INVISIBLE);

<&

values) {

Using the Asynclask class @

onPreExecute(), invoked on the Ul thread immediately after the task is executed. This step is normally
used to setup the task, for instance by showing a progress bar in the user interface.

dolnBackground(Params...), invoked on the background thread immediately after onPreExecute() finishes
executing. This step is used to perform background computation that can take a long time. The parameters
of the asynchronous task are passed to this step. The result of the computation must be returned by this
step and will be passed back to the last step. This step can also use publishProgress(Progress...) to
publish one or more units of progress. These values are published on the Ul thread, in the
onProgressUpdate(Progress...) step.

onProgressUpdate(Progress...), invoked on the Ul thread after a call to publishProgress(Progress...).
The timing of the execution is undefined. This method is used to display any form of progress in the
user interface while the background computation is still executing. For instance, it can be used to
animate a progress bar or show logs in a text field.

onPostExecute(Result), invoked on the Ul thread after the background computation finishes. The result of
the background computation is passed to this step as a parameter.

AsyncTask Lifecycle
/ MAIN U / / pa— /

€Y

AsyncTask
Status

Execute(...); |
@ onPreExecute(| ;M PENDING ' ASYNCTASK.STATUS.PENDING
); A
l I
N ~A ©)
S | dolnBackground(
Y [params)
U
| N
RUNNING $ @ ASYNCTASK.STATUS.RUNNING
T
@ H A publishProgress(
onProgressUpd - S progress)
ate(progress); >R
= 6
A———— (6)
FINISHED e
@ onPostExecute o - LT Gty ASYNCTASK.STATUS.FINISHED
(result); >
hup://androidimran.blogspot.com

Persistence, Multithreading & Networking

CoffeeMate

&
(Googles Gson

Persistence, Multithreading & Networking

Google’s Gson

https://sites.google.com/site/gson/gson-user-quide

Gson is a Java library that can be used to convert Java Objects into
their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. Gson is an open-source project hosted at
http://code.google.com/p/google-gson.

Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code of.

CoffeeMate & Google’s Gson

 To create a POJO from a JSON String we can do
Somethlng like this (. fromJson ())

// Result handling

Coffee result = null;

Type objType = new TypeToken<Coffee>(){}.getType();
result = new Gson().fromJson(response, objType);

d To convert a POJO to a JSON String we can do
something like this (. toJdson ())

TyBe 6bjT§pe = new‘TypeToken<Coffée>(){}.getType();
String json = new Gson().toJlson(aCoffee, objType);

CoffeeMate Example
(Using AsyncTasks)

Coﬁeel\/late 5.0 AsyncTasks (and more)

v 3> src
» > ie.cm.activities
v I} > ie.cm.api
» [J] > CoffeeApi.java

» 1}l > Rest.java —

» 13 > ie.cm.coffeeadapters
v {32 > ie.cm.main
» |J2 CoffeeMateApp.java
» {3 > ie.con.models
v {f} > ie.cm.tasks
» |J] > BaseTask.java
» [J] > CallBackListener.java
» [J] > DeleteTask.java
» [J] > GetAllTask.java
» 1] > GetTask.java
» [J] > InsertTask.java
» |J] > TaskManager.java
» [J] > UpdateTask.java
> E"?ﬁgen [Generated Java Files]
P =, Android 5.0.1
» =2, Android Private Libraries
> Z=bin
> 2% libs
> E'EE> res
<1, > AndroidManifest.xml

T

api classes for calling
REST service

. AsyncTasks for CRUD

(and callback mechanism to update Ul)

CoffeeMate 5.0 AsyncTasks

@ ©© Genymotion for personal use - S5 - 4.4.2 - APl 19 - 1080x1920 (1080x1920, 48...

&
=

CoffeeMate 5.0

Recently Added Coffee's

@ ©© Genymotion for personal use - S5 - 4.4.2 - APl 19 - 1080x1920 (1080x1920, 48...

Favourite
Coffee's

\l/\\/ g;gsegogg Shop E% *g 9 x
- Standard Black €1.89
(Dvownloading The Full Coffee) Ardkeen 507 x
List... — ﬁ(r;;lgricano f%.gg b 4
L~ i xtra 1)
“ ttifsst.ghop f])*gg x
public class TaskManager {
public static void getallCActivity activity,CoffeeFragment fragment) {
new GetAllTask(Cactivity, fragment, "Downloading The Full Coffee List...")
.execute("/getall”); // "/getall"” on JumpyJdosh "/coffees" on cloudbees
}
<« i —T Q <> i — ™

CoffeeApl

Used for passing/
retrieving JSON coffee

data

public class CoffeeApi {
VPPV IOV IOV
public static List<Coffee> getAll(String call) {
String json = Rest.get(call);
Type collectionType = new TypeToken<List<Coffee>>() {}.getType();

return new Gson().fromJson(json, collectionType);
}
VOSSPV IV IV IIIIIIIIIIIIIIIIIIIIIIIY
public static Coffee get(String call) {

String json = Rest.get(call);

Type objType = new TypeToken<Coffee>(){}.getType();

return new Gson().fromJson(json, objType);
}
S/ /S S S S S S S
public static String delete(String call) {

return Rest.delete(call);
}
S/ /S S S
public static String insert(String call,Coffee coffee) {

Type objType = new TypeToken<Coffee>(){}.getType();

String jsonCoffee = new Gson().toJlson(coffee, objType);

return Rest.post(call, jsonCoffee);
}
VOV IOV IOV
public static String update(String call,Coffee coffee) {

Type objType = new TypeToken<Coffee>(){}.getType();

String jsonCoffee = new Gson().toJlson(coffee, objType);

return Rest.put(call, jsonCoffee);

¥
S/

public class Rest { |

private static String server;

private static HttpParams httpParameters; F% t J ()
private static DefaultHttpClient httpClient; eS ' ava eXtraCt
private static final String URL = "http://www. jumpyjosh.com/cms/rest/api";

private static final String EURL = "http://coffeemate.edel@20.cloudbees.net/api”;

public static void setup() {
Rest.server = URL;
httpParameters = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(httpParameters,
10000);
HttpConnectionParams.setSoTimeout(httpParameters, 20000);
httpClient = new DefaultHttpClient(ChttpParameters); Used for making the web

service calls

}

private static String getBase() {
return server,

}

VISPV IOV
public static String get(String url) {
String result = "";
try {
HttpGet getRequest = new HttpGet(getBase() + url);
getRequest.setHeader("accept"”, "application/json");
//getRequest.setHeader("accept","text/plain);
HttpResponse response = httpClient.execute(getRequest);
result = getResult(response).toString();
} catch (Exception e) {
System.out.printlnCe.getMessage());
}

return result;

o

AsyncTask -TaskManager

public class TaskManager {
public static void getall(Activity activity,CoffeeFragment fragment) {
new GetAllTask(Cactivity, fragment, "Downloading The Full Coffee List...")
.execute("/getall”); // "/getall” on JumpyJosh "/coffees" on cloudbees

}
Calling our
AsyncTasks

public static void get(CActivity activity, int id) {
new GetTask(activity, "Downloading Individual Coffee Data...") <
.execute("/get/" + 1id);

¥
public static void delete(Activity activity,CoffeeFragment fragment,int id) {
new DeleteTask(activity, fragment, "Deleting A Single Coffee...")
.execute("/delete/" + id);
¥

public static void insert(Activity activity,Coffee c) {
new InsertTask(Cactivity, "Adding a Single Coffee...")
.execute("/insert”,c, "dave");

}

public static void update(Activity activity,Coffee c) {
new UpdateTask(Cactivity, "Updating A Single Coffee...")
.execute("/update”,c);
} @0verride
} public void onResume() {
super .onResume();

Irlour(DoﬁeeF¥agrnent TaskManager .getall(getActivity(),this);

Persistence, Multithreading & Networking

AsyncTlask -BaseTlask

public class BaseTask<T> extends AsyncTask<Object, Void, Object> {

[protected CallBackListener<T> callback;] <«
protected ProgressDialog dialog;
protected Context context;
protected String message;

@SuppressWarnings("unchecked™")

public BaseTask(Context context,CoffeeFragment fragment,String message)

{
[this.callback = (CallBacklListener<T>) Fragment;]
this.context = context;
this.message message;

¥

@SuppressWarnings("unchecked")
public BaseTask(Context context,String message)

{
if(context instanceof CallBackListener)
this.callback = (CallBackListener<T>) context;
this.context = context;
this.message = message;
}
@0verride

protected void onPreExecute() {
super .onPreExecute();
this.dialog = new ProgressDialog(context, 1);
this.dialog.setMessage(message);
this.dialog.show();

}

@0verride
protected Object doInBackground(Object... params) {
return null;

}

CallBack
Reference

public interface CallBackListener<T> {
public void setList(List<T> alList);
public void setObject(T object);
public void updateUI();

Callback Interface

J Necessary, due to AsyncTlasks In separate classes

public interface CallBackListener<T> {
public void setList(List<T> alList);
public void setObject(T object);
public void updateUI();

J Reference maintained in BaseTask

| protected CallBackListener<T> callback;'
 Set in subclass Task, via TaskManager, e.g.

public static void get(CActivity activity, int id) {
new GetTask(Cactivity, "Downloading Individual Coffee Data..."
.execute("/get/" + 1id);

public class GetTask extends BaseTask<Coffee> {

<7

public GetTask(Context context, String message) {
super(context, message);

}

Persistence, Multithreading & Networking

Callback Interface

J Invoked In relevant methods

@0verride

super .onCreate(savedInstanceState);

public void onCreate(Bundle savedInstanceState) {

activityInfo = getIntent().getExtras();
TaskManager .get(this, activityInfo.getInt("coffeeID"));
. uut.cdit),

}

@0verride

super .onPostExecute(result);

protected void onPostExecute(Object result) {

callback.setObject((Coffee) result);
callback.updateUI();

if (dialog.isShowing())
dialog.dismiss();

\\ INn our
GetTask

our Edit
Activity

Callback Interface
 Overridden in class that implements the interface

@0verride |
public void setObject(Coffee object) {

. this.aCoffee = object; |n Our Edlt

.

@0Override ACtIVIty

public void updateUI() {
setTextViewString(R.id.coffeeNameTextView, aCoffee.name);
setTextViewString(R.id.coffeeShopTextView, aCoffee.shop);

setEditString(R.id.nameEditText, aCoffee.name);
setEditString(R.id.shopEditText, aCoffee.shop);
setEditDouble(R.id.pricekEditText, aCoffee.price);
setRatingBarValue(R.id.coffeeRatingBar, (float)aCoffee.rating);

favouriteImage = (ImageView) findViewById(R.1id. favouriteImageView);

if (CaCoffee.favourite == 1) {
favouriteImage.setImageResource(R.drawable. ic_favourite_on);
isFavourite = true;

} else {
favouriteImage.setImageResource(R.drawable. ic_favourite_off);
isFavourite = false;

}

AsyncTask -GetAllTask

public class GetAllTask extends BaseTask<Coffee> {

public GetAllTask(Context context, CoffeeFragment fragment,
super(context, fragment, message);

}

@0verride
protected List<Coffee> doInBackground(Object... params) {

try {
return CoffeeApi.getAlI((String) params[0]);
¥

catch (Exception e) {
Log.v("ASYNC", "ERROR : " + e);
e.printStackTrace();

}

return null;

}

@SuppressWarnings("unchecked")

@0verride

protected void onPostExecute(Object result) {
super .onPostExecute(result);

callback.setList((List<Coffee>) result);
callback.updateUI();

if (dialog.isShowing())
dialog.dismiss();

String message) {

Remaining Tasks
implemented in a similar
fashion

CoffeeFragment (Extracts)

public class CoffeeFragment extends ListFragment implements OnClickListener,
CallBackListener<Coffee> {

protected static CoffeelListAdapter [1jiStAdapter;

protected CoffeeFilter offeeFilter;
protected List <Coffee> coffeeList = new ArraylList<Coffee>();

@0verride

publig void setList(List<Coffee> alList) {

fCaList !'= null) // App Restart....
coffeeList = (CArraylList<Coffee>) alist;

@0verride

public void setObject(Coffee object) {}
L7

@0verride

public void updateUI() {

Overriding the necessary
if (getActivity() instanceof Favourites) {

meth.OdS from the coffeeFilter.setFilter("favourites");
interface coffeeFilter.filterCnull);
listAdapter.notifyDataSetChanged();

}
this.setlListAdapter(listAdapter);

listAdapter = new CoffeelListAdapter(getActivity(),
coffeeFilter = new CoffeeFilter(coffeelList, "all",

this, coffeelList);
listAdapter);

Android Networking
(Using Volley)

Volley is an HT TP library developed by Google that
makes networking for Android apps easier and most
importantly, faster. Volley is available through the
open AOSP repository.

Introduced during Google [/O 2013, it
was developed because of the absence, In the
Android SDK, of a networking class capable of
working without interfering with the user experience.

Volley e

 Volley offers the following benefits:
Automatic scheduling of network requests.
Multiple concurrent network connections.

Transparent disk and memory response caching with standard HT TP
cache coherence.

Support for request prioritization.

Cancellation request API. You can cancel a single request, or you can set blocks
or scopes of requests to cancel.

Ease of customization, for example, for retry and backofft.

Strong ordering that makes it easy to correctly populate your Ul with data fetched
asynchronously from the network.

Debugging and tracing tools.

Why Volley?

JAvoid HttpUrlConnection and HttpClient

- On lower AP levels (mostly on Gingerbread and Froyo),
HttpUrlConnection and HttpClient are far from being perfect.
There are some Known issues and bugs that were never fixed.

- Moreover, HttpClient was deprecated in the last API update (API
22), which means that it will no longer be maintained and may be
removed Iin a future release.

- These are sufficient reasons for deciding to switch to a more
reliable way of handling your network requests.

Why Volley?

dAvoid AsyncTask

- Since the introduction of Honeycomb (APl 11), it's been mandatory to
perform network operations on a separate thread, different from the
main thread. This substantial change led the way to massive use of
the AsyncTask<Params, Progress, Result> specification.

- The class is pretty straightforward, way easier than the
Implementation of a service, and comes with a ton of examples
and documentation.

- The main problem (next slide), however, is the serialization of the

calls. Using the AsyncTask class, you can't decide which request
goes first and which one has to wait. Everything happens FIFO, first

IN, first out.

Problem Solved... %

Jd The problems arise, for example, when you have to load a list of items
that have attached a thumbnail. When the user scrolls down and
expects new results, you can't tell your activity to first load the JSON of
the next page and only then the images of the previous one. This can
become a serious user experience problem in applications such as

Facebook or Twitter, where the list of new items is more important than
the thumbnail associated with it.

- Volley aims to solve this problem by including a powerful cancellation
APIl. You no longer need to check in onPostExecute whether the

activity was destroyed while performing the call. This helps avoiding
an unwanted NullPointerException.

Why Volley? for

JIt's Much Faster

. Some time ago, the Google+ team did a series of performance
tests on each of the different methods you can use to make
network requests on Android. Volley got a score up to ten times

better than the other alternatives when used in RESTTul
applications.

J Small Metadata Operations

- Volley is perfect for small calls, such as JSON objects, portions of
ISts, detalls of a selected item, and so on. It has been devised for

RESTTul applications and in this particular case it gives its very
nest.

Why Volley? o
It Gaches Everything

- Volley automatically caches requests and this is something truly life-
saving. Let’s return for a moment to the example given earlier. You
have a list of items—a JSON array let’s say—and each item has a
description and a thumbnail associated with it. Now think about what
happens if the user rotates the screen: the activity is destroyed, the list
IS downloaded again, and so are the images. Long story short, a
significant waste of resources and a poor user experience.

- Volley proves to be extremely useful for overcoming this issue. It
remembers the previous calls it did and handles the activity
destruction and reconstruction. It caches everything without you
having to worry about it.

Why Not Volley?

It iIs not so good, however, when employed for
streaming operations and large downloads. Contrary to
common belief, Volley's name doesn't come from the
sport dictionary. It’s rather intended as repeated bursts
of calls, grouped together. It's somehow intuitive why
this library doesn't come in handy when, instead of a
volley of arrows, you want to fire a cannon ball.

Under the Hood

1 Volley works on
three different
levels with each
level operating on
its own thread.

*
- Cac—‘“e s

cache miss

main thread

Under the Hood %

1 Main Thread

- On the main thread, consistently with what you already do in the

AsyncTask specification, you are only allowed to fire the request
and handle its response. Nothing more, nothing less.

- The main consequence is that you can actually ignore everything
that was going on in the dolnBackground method. Volley
automatically manages the HT TP transactions and the catching
network errors that you needed to care about before.

Under the Hood @

J Cache and Network Threads

- When you add a request to the queue, several things happens under
the hood. First, Volley checks if the request can be serviced from
cache. If it can, the cached response is read, parsed, and delivered.
Otherwise it is passed to the network thread.

- On the network thread, a round-robin with a series of threads is
constantly working. The first available network thread dequeues the
request, makes the HT TP request, parses the response, and writes it
to cache. To finish, it dispatches the parsed response back to the
main thread where your listeners are waiting to handle the result.

Getting Started With Volley

J Download the Volley Source

m git clone https://android.googlesource.com/platform/frameworks/volley

J Import Source as Module
- File -> New Module, choose Import Existing Project

. Add dependency compile project (':volley'")

 Alternative — unofficial mirror site so beware
m compille 'com.mcxiaoke.volley:library—-aar:1.0.15"

Using Volley

d Volley mostly works with just two classes, RequestQueue
and Request. YOU first create a RequestQueue, Which
manages worker threads and delivers the parsed results

back to the main thread. You then pass it one or more
Request ODJeCts.

J The Request constructor always takes as parameters the
method type (GET, POST, etc.), the URL of the resource,

and event listeners. Then, depending on the type of request,
it may ask for some more variables.

£\
USlng VO“ey * String url = "http://httpbin.org/html";

// Request a string response
Jd Here we create a RequestQueue StringRequest stringRequest = new StringRequest(Request.Method.GET, url,

object by iﬂVOkiﬂg one of VoIIey's f@overmdzew Response.Listener<String>() { \

convenience methods, public void onResponse(String response) {
Volley.newRequestQueue.

This sets up a RequestQueue
object, using default values defined

by Volley. _} Y,

// Result handling
System.out.println(response.substring(0,100));

L, , } ,New Response.ErrorListener() {
J As you can see, it’s incredibly I/@Ove,ﬂde \
straightforward. You create the public void onErrorResponse(VolleyError error) {
r t an ittother t
equest ana adq O e Teques // Error handling
queue. And you're done. System.out.println("Something went wrong!");
2 If you have to fire multiple requests SR AU e I Ee L)
in several activities, you should Q J

avoid using this approach ~better 1;
to instantiate one shared requ
queue and use it across your
project (CoffeeMate 5.0)

Volley.newRequestQueue(this).add(stringRequest);

CoffeeMate Example
(Using Volley)

CoffeeMate 5.0 API & Callback Interface

iCoffeeMate.5.0> B3 app> B3 src> 71 main
o ® +
v [zapp
» [manifests
v [java
v [lie.cm
> [Jactivities
> adapters

®s Caffecap - api class for calling

(1) & VolleyListener ~)

’ Dgg’bm,:z:ﬁagment o REST SerVice

© ® CoffeeFragment
© & EditFragment "
©s HeIpFra?gment u Ca”baCk meChan|Sm to
(© & SearchFragment
» [EImain d 't Ul
» [EImodels up a e
» [Edie.cm (androidTest)
> [Edie.cm (test)
v [Fares
» [E1drawable
» [Edlayout
» [Elmenu
» [EImipmap
» [Edvalues

» [Cavolley
» (& Gradle Scripts

Persistence, Multithreading & Networking

CoffeeMate 5.0 & Volley

Downloading Coffees...

= CoffeeMate

Recently Added Coffee's

, Mocca Latte €2.99
' Ardkeen Stores 40+

Espresso €1.99
\1,\(Tescos Stores 35*

Standard Black €1.99
\1,\(Ardkeen Stores 25+

o
X
X
A

, Cappuccino €1.49
) . 1 Spaeghop 2.5+

=
ddrohan.gitbooks.io

@

@Override
public void onResume() {
super.onResume();
//updateUI(this);
CoffeeApi.attachListener(this);
CoffeeApi.getAll("/coffees/" + Base.googleToken, mSwipeRefreshlLayout);

s

d Here we ‘attach’ our VolleyListener t0 the
Fragment (CoffeeFragment) and then getAll() of
the current users coffees.

d This method triggers a call to setList() via the
callback interface, which in turn updates the Ul
ONLY when our API call completes.

@Override

public void setlList(List list) {
Base.app.coffeeList = list;
updateUI(this);

}

d We use a similar approach for Updating, Deleting
etc.

public class CoffeeApi {

private static final String hostURL = "http://coffeemateweb.herokuapp.com”;
private static final String LocalhostURL = "http://192.168.0.13:3000";
private static VolleyListener vListener;

private static final String TAG = "coffeemate";

public static void attachListener(VolleyListener fragment) { vListener = fragment; }
public static void detachListener() { vListener = null; }
private static void showDialog(String message) {...}
private static void hideDialog() {...}
/111177777777 77777777/77777/777/77777/77777/777/777/77/777/7777777/777/77/77/7777/77/77/77/77/7777,
public static void getAll(String url, final SwipeRefreshLayout mSwipeRefreshLayout) {
Log.v(TAG, "GETing from " + url);
showDialog("Downloading Coffees...");
—
StringRequest stringRequest = new StringRequest(Request.Method.GET, ho
new Response.Listener<String>() {
@Override
public void onResponse(String response) {
// Docult h:nd]ing
List<Coffee> result =
Type collectionType =

hideDialog();

}

}, new Response.ErrorListener() {

@Override

public void onErrorResponse(VolleyError error) {
// Error handling
System.out.println("Something went wrong!");
mSwipeRefreshLayout.setRefreshing(false);
error.printStackTrace();

CoffeeApi — fo
refactored with
Volley *

Here we create a StringRequest
GET request.

L] On a successful RESPONSE we convert

the result into a List of coffees and

Trigger the callback to set the list in the
fragment (and cancel the refresh
spinner)

@Override
-\\\\‘ public void setList(List list) {
Base.app.coffeeList = list;
updateUI(this);
¥

}
1
// Add the request to the queue
Base.app.add(StringrRequesc/),

CoffeeFragment (Extracts) ~

public class CoffeeFragment extends Fragment implements AdapterView.OnItemClickListener,
16w, 1CKLT
VolleyListener

@overtr ruc
public void onResume() {

super.onResume();

//updateUI(this);

CoffeeApi.attachListener(this);

CoffeeApi.getAll("/coffees/" + Base.googleToken, mSwipeRefreshlLayout);
}

/66;erride

/

S3Z$££issid onPause() {

super.onause(); . public void setlList(List list) {

} o ' Base.app.coffeeList = list;
}
@Override
public void updateUI(Fragment fragment) {

Overriding the necessary } fragment. onResume () ;

methods from the \
interface

Persistence, Multithreading & Networking

CoffeeMate 5.0 — Using AsyncTasks Vs Volley

Jd Using AsyncTasks JdUsing Volley
- CoffeeAp - CoffeeApl
- CallBackListener - VolleyListener
- Rest
- TaskManager
CRUD Tasks x 6

EITotaI = 10 Classes JdTotal = 2 Classes

Jd We looked at data persistence and multithreading in Android
Development and how to use an SQLite datalbase

J We covered a brief overview of JSON & Googles Gson

J We covered in detall the use of AsyncTasks and Volley
to execute background tasks and make API calls

JWe Compared the two in our CoffeeMate Case Study

Summary

References

 Victor Matos Notes — Lesson 13 (Cleveland State
University)

J Android Developers
http://developer.android.com/index.html

J http://code.tutsplus.com/tutorials/an-introduction-to-
volley--cms-23800

Questions?

Persistence, Multithreading & Networking

Appendix

dMultithreading Overview
dUsing a Splash & Login Screen
QFiles

dContent Providers

AREST

JANd a bit on Bundles...

Persistence, Multithreading & Networking

Multithreading Overview

Persistence, Multithreading & Networking

Threads

http://developer.android.com/reference/java/lang/Thread.html

J A Thread is a concurrent unit of execution.

d Each thread has its own call stack. The call stack is used on
method calling, parameter passing, and storage for the called
method’s local variables.

J Each virtual machine instance has at least one main thread.

J Threads in the same VM interact and synchronize by the use

of shared objects and monitors associated with these objects.

Threads ‘

Process 1 (Virtual Machine 1)

Process 2 (Virtual Machine 2)

Common memory
resources

Common memory
resources

Main
thread

Thread-2

Thread-1

Persistence, Multithreading & Networking

J Threads share the process' resources but are able to execute
iIndependently.

J Applications responsibllities can be separated
- main thread runs Ul, and
. slow tasks are sent to background threads.

 Threading provides an useful abstraction of concurrent
execution.

J A multithreaded program operates faster on computer

systems that have multiple CPUS.
(Java 8 supports multi-core multi-threading)

Advantages of Multithreading

Disadvantages

J Code tends to be more complex

J Need to detect, avoid, resolve

{
deadlocks fmﬁ
’

T

Al A2
Waiting for A2 Waiting for Al

to finish to finish

Persistence, Multithreading & Networking

Android‘s Approach to Slow Activities

Problem: An application may involve a time-consuming operation.

Goal: We want the Ul to be responsive to the user in spite of heavy load.

Solution: Android offers two ways for dealing with this scenario:

1. Do expensive operations in a background service, using
notifications to inform users about next step

2. Do the slow work in a background thread.

Using Threads: Interaction between Android threads is accomplished using
(a) a main thread Handler object and

(b) posting Runnable objects to the main view.

hread Execution — Example

There are basically two main ways of having a Thread execute application code.

] Create a new class that extends Thread and override its
run() method.

MyThread t = new MyThread();
t.start();

(d Create a new Thread instance passing to it a Runnable object.

Runnable myRunnablel = new
MyRunnableClass(); Thread tl = new
Thread(myRunnablel); tl.start();

In both cases, the start() method must be called to actually execute the new

Thread.

Using a Splash Screen
&
Login Screen

Persistence, Multithreading & Networking

What do we want exactly?

S O O o ymoti

 Display Splash Screen for a
ey fow seconds

8401 Display Login Screen

1) Only show Home Screen
N PR once valid details entered

Splash

public class Splash extends Activity {
// used to know if the back button was pressed in the splash screen activity
// and avoid opening the next activity
private boolean mIsBackButtonPressed;
private static final int SPLASH_DURATION = 2@00; // 2 seconds

. Handler object associated with

public void onCreate(Bundle savedInstanceState) { single thread

super.onCreate(savedInstanceState);
setContentView(R.layout.splash);

Handler handler = new Handler(Q);
// run a thread after 2 seconds to start the home screen
handler .postDelayed(Cnew Runnable() {

@0verride
public void run() { Start Login Screen via Intent
// make sure we close the splash screen so the user —

// won't come back when it presses back key
finish();

if (ImIsBackButtonPressed) {
// start the home screen if the back button wasn't pressed already
Intent intent = new Intent(Splash.this, Login.class);
Splash.this.startActivity(intent);

}
}
}, SPLASH_DURATION); // time in milliseconds to delay call to run()
}
@0verride

public void onBackPressed() {
// set the flag to true so the next activity won't start up
mIsBackButtonPressed = true;
super.onBackPressed();

Jpdate Manifest File

k?xml version="1.0" encoding="utf-8"7>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"”
package="ie.cm"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk android:minSdkVersion="14" android:targetSdkVersion="21"
<application
android:allowBackup="true”
android:icon="@drawable/ic_launcherl"”
android:theme="@style/appTheme"
android:label="@string/appName"
android:name="ie.cm.main.CoffeeMateApp ">"

Activity to

//’7<activity

android:name="ie.cm.activities.Splash"
android:configChanges="orientation/ keyboardHidden"
android:screenOrientation="portrait”
android:theme="@android:style/Theme.NoTitleBar" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

</intent-filter>
</activity>

o

<category android:name="android.intent.category. L AUNCHER" />

Launch

/

]

<activity android:name="ie.cm.activities.Home"></activity>
<activity android:name="ie.cm.activities.lLogin"></activity>
<activity android:name="ie.cm.activities.Help"></activity>
<activity android:name="ie.cm.activities.Add"></activity>
<activity android:name="ie.cm.activities.Edit"></activity>
<activity android:name="ie.cm.activities.Search"></activity>
<activity android:name="ie.cm.activities. Favourites"></activity>

</application>
</manifest>

Using SharedPreferences

Persistence, Multithreading & Networking

SharedPreferences (1)

= [wo forms:

o Share across all components in an application
= getSharedPreferences(“SomeString”, Activity. MODE_PRIVATE);

o Store only data needed by this Activity
= getPreferences(Activity. MODE_PRIVATE);

o Store only data needed by this Activity when Activity becomes inactive

(out not when finished)

= Eg. Orientation change from portrait to landscape
= use Bundle in onSavelnstanceState / onRestorelnstanceState / onCreate

SharedPreferences (2)

A Create your SharedPreferences instance

SharedPreferences settings
= this.getSharedPreferences ("Demo",

1 Add data.in the form : <String Key,Strihg Values

~FArAn 9 1+ Tt A —
LI LD N\ AL LN Ll e LN AL U\ — A L U U L

editor.pugég£%ﬂ@§?@@@§Q);"value");
editor.commit () ;
dUse ‘Key’ to get ‘Value’

String str = settings.getString ("name",
JReset the preferences (clead 1,1+ 4116)

’

editor.clear () .commit () ;

Persistence, Multithreading & Networking

login.xml

= CoffeeMate 4.0

CoffeeMate

Password

Login

New to CoffeeMate? Register here

EE Outline 23

v ScrollView

v RelativelLayout

v |::| header (LinearlLayout)
DlmageView - logintop

v Dfooter (LinearLayout)
D ImageView - loginbottom

v l:l LinearLayout
|ab| TextView - "Email"
X |loginEmail (EditText)
|ab| TextView - "Password"
X |loginPassword (EditText)
@btnLogin (Button) - "Login”
|abllink_to_register (TextView) - "New to CoffeeMat..."

Persistence, Multithreading & Networking

Login (1)

public class Login extends Activity implements OnClickListener {

// used to know if the back button was pressed in the splash s
// and avoid opening the next activity
private boolean mIsBackButtonPressed;

private SharedPreferences settings;

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

settings = getSharedPreferences("loginPrefs",

if (settings.getBoolean("loggedin", false))
/* The user has already logged in, so
startHomeScreen();

setContentView(R.layout.login);
Button login = (Button) findViewById(R.id.btnLogin);
login.setOnClickListener(this);

}

@0verride

public void onBackPressed() {
// set the flag to true so the next activity won't start u
mIsBackButtonPressed = true;
super .onBackPressed();

Persistence, Multithreading & Networking

Login (2)

@0verride
public void onClick(View arg@) {

ky

CharSequence email = ((TextView) findViewById(R.id.loginEmail))
.getText();

CharSequence password = ((TextView) findViewById(R.id. loginPassword))
.getText();

if Cemail.length() <= @ || password.length() <= 0)
Toast.makeText(this, "You must enter an email & password”
Toast.LENGTH_SHORT) .show();
else if (!email.toString().matches("d")
Il !password.toString().matches("d"))
Toast.makeText(this, "Unable to validate your email & password",
Toast.LENGTH_SHORT) .show();
else if (!mIsBackButtonPressed) {
// Validate User with Server Here

// Update logged in preferences

SharedPreferences.Editor editor = settings.edit();<%7

“Very Secure”
email & password
| _— credentials!

Possibly via a
| __— Web Service??
(Not now obviously)

Update Preferences

editor.putBoolean("loggedin", true);
editor.commit();

// start the home screen if the back button wasn't pressed alread)
startHomeScreen();

this.finish(); // destroy the Login Activity

private void startHomeScreen() {l]

with data

—nd Result

=0 Genymotion - Nexus S - 4.3 - API 18 - 480x800 (1...

o

[] @ ©© Genymotion for personal use - S5 - 4.4.2 - APl 19 - 1080x19
L]
offee ate 4.0
. - - -
—
Email
L
Password
Login ‘

New to CoffeeMate? Register here

[J @ ©© Genymotion for personal use - S5 - 4.4.2 - APl 19 - 1080x1920 (1080x1...

CoffeeMate

Email

dd

Password

Login

New to CoffeeMate? Register here

® O O oo Genymotion for personal use — S5 — 4.4.2 — API 19 - 1080...

Coffee Search
Check In Coffee's
Rece Added

Mocca Latte

‘ Ardkeen Stores
R Espresso
Lo~d Tescos Stores

Standard Black

L~ Ardkeen Stores
- Cappuccino
‘ Spar Shop

Favourite
Coffee's

€1.49
25*

X X X X

Using Files

Persistence, Multithreading & Networking

File Access (Internal & External)

 Store data to file
J Use java.io.” to read/write file
J Only local file can be visited
- Advantages: can store large amounts of data

. Disadvantages: file format changes and/or updates
may result in significant programming/refactoring

Jd Very similar to file handling in java desktop applications
1 Generally though, not recommended

Read from a file

1 Open a File for input
- Context.openFilelnput(String name)
- If faillure then throw a FileNotFoundException

public Map<String,String> readFromFile (Context context) {
Map<String,String> temp = null;

try{
inByteStream = context.openFileInput (FILENAME) ;
OIStream = new ObjectInputStream(inByteStream) ;

temp = (Map<String,String>)OIStream.readObject() ;

inByteStream.close() ;
OIStream.close() ;

}

catch (Exception e){...}

return temp;

}

Persistence, Multithreading & Networking

Write to file

1 Open a File for output
- Context.openFileOutput(String name,int mode)
- [If failure then a new File is created
- Append mode: to add data to file

public void writeToFile (Map<String,String> times, Context context) {

try{
outByteStream = context.openFileOutput (FILENAME, Context.MODE PRIVATE) ;
OOStream = new ObjectOutputStream(outByteStream) ;
OOStream.writeObject (times) ;
outByteStream.close() ;
OOStream.close() ;

}

catch (Exception e){...}

Persistence, Multithreading & Networking

Write file to SDCard

d To get permission for SDCard r/w in
AndroidManifest.xml:

<uses-permission android:name="android.permission.MOUNT UNMOUNT FILESYSTEMS"“
/>

<uses-permission

android:name="android.permission.WRITE EXTERNAL STORAGE™"
/>

Persistence, Multithreading & Networking

SDCard read/write
JNeed a SD Card, (obviously ©)

if (Environment.getExternalStorageState () .equals (Environment.MEDIA MOUNTED))
{

File sdCardDir = Environment.getExternalStorageDirectory() ;
File saveFile = new File (sdCardDir, "stuff.txt");
FileOutputStream outStream = new FileOutputStream(saveFile) ;

// Same approach as before, once you have a FileOutputStream and/or
// FileInputStream reference...

outStream.close() ;

Persistence, Multithreading & Networking

Using ContentProviders

Persistence, Multithreading & Networking

Content Provider

Ja content provider is a specialized type of datastore that
exposes standardized ways to retrieve and manipulate
the stored data.

Jd Apps can expose their data layer through a Content
Provider, identified by a URI.

J Some native apps provide Content Providers
1 Your apps can provide Content Providers

Using ContentProvider to share data

d Content Providers are the Android platforms way of sharing information between multiple
applications through its ContentResolver interface.

d Each application has access to the SQLite database to maintain their information and this
cannot be shared with another application.

public class PersonContentProvider extends ContentProvider {
public boolean onCreate()
public Uri insert(Uri uri, ContentValues values)
public int delete(Uri uri, String selection, String]]

selectionArgs)

public int update(Uri uri, ContentValues values, String
selection, String[] selectionArgs)
public Cursor query(Uri uri, String[] projection, String
selection, String[] selectionArgs, String

sortOrder)
public String getType (Uri uri)}

Persistence, Multithreading & Networking

Addition to the AndroidManifest.xml

d Add the following user permission tag
<uses-permission android:name="android.permission.READ_CONTACTS" />
- To give your application access to the contacts information.

<manifest >
<application android:icon="@drawable/icon"
android:label="@string/app name">
<provider android:name=".PersonContentProvider"
android:authorities="ie.wit.provider.personprovider" />
</application>
</manifest>

Persistence, Multithreading & Networking

Why is it called "Representational State Transfer"’f%

_ http://www.boeing.com/aircraft/747 R
Client [« Resource
\\’—‘\/_/

Fuel requirements
Maintenance schedule

Boeing747.html

« The Client references a Web resource using a URL.

A representation of the resource is returned (in this case as an HTML document).

* The representation (e.g., Boeing747.html) places the client in a new state.

* When the client selects a hyperlink in Boeing747.html, it accesses another
resource.

* The new representation places the client application into yet another state.

« Thus, the client application transfers state with each resource representation.

REST Characteristics

d REST is not a standard (unlike SOAP)
You will not see the W3C putting out a REST specification.
You will not see IBM or Microsoft or Sun selling a REST developer's toolkit.

d REST is just a design pattern

You can't bottle up a pattern.

You can only understand it and design your Web services to it.
J REST does prescribe the use of standards:

HTTP

URL
XML/HTML/GIF/JPEG/etc. (Resource Representations)

text/xml, text/html, image/qgif, image/jpeg, etc. (Resource Types, MIME
Types)

REST Principles

 Everything Is a resource

J Every resource is identified by a unique identifier
J Use simple and uniform interfaces

J Communication is done by representation

J Be Stateless

A We'll look at these, and more, next year ©.

Using Bundles

Persistence, Multithreading & Networking

The Bundle Class (Saving)

J

J

J

Override onSavelnstanceState
And pass the Bundle to the superclass method
protected void onSaveInstanceState (Bundle outState) {
super .onSavelnstanceState (outState) ;
outState.putBlah(someData) ;
}
Called
- When user rotates screen
- When user changes language
- When app is hidden and Android needs the memory
Not called
- When user hits Back button
Note
Superclass method automatically stores state of GUI widgets (EditText data, CheckBox state, etc.)

Persistence, Multithreading & Networking

Bundle : Restoring Data

 Override onRestorelnstanceState
- Pass Bundle to superclass method
- Look for data by name, check for null, use the data

protected void onRestorelInstanceState (Bundle savedInstanceState) {
super .onRestoreInstanceState (savedInstanceState) ;
SomeType data = savedInstanceState.getBlah(key) ;

if (data '= null) { doSomethingWith (data), }
}
J Called
- Any time app is restarted after onSavelnstanceState
J Note

- The same Bundle is passed to onCreate.
- Superclass method automatically restores widget state

The Bundle Class: Detalls %

d Putting data in a Bundle

putBoolean, putBooleanArray, putDouble, putDoubleArray, putString, putStringArray,
etc.

¢ These all take keys and values as arguments.

The keys must be Strings. The values must be of the standard types (int, double,
etc.) or array of them.

putSerializable, putParceleable

¢ Lets you store custom objects. Note that ArrayList and most other builtin Java
types are already Serializable

d Retrieving data from a Bundle

getBoolean, getBooleanArray, getDouble, getDoubleArray, getString, getStringArray,
etc.

¢ No typecast required on retrieval. Numbers are O if no match.
getSerializable, getParceleable
¢ Typecast required on retrieval. Values are null if no match.

Bundle Summary

d Save data in onSavelnstanceState
Can put individual pieces of data in the Bundle, or can add a composite data structure.
Custom classes must implement Serializable or Parceleable

J Load data in onRestorelnstanceState or in onCreate
Look in Bundle for property of given name

For Object types, check for null
For number types, check for O (zero)

Note: Preventing Screen Rotations

J Issue
- Screen rotations usua

ly require a new layout

- They also cause the app to be shutdown and restarted

¢ Handling this is the topic of this lecture

J Problem

- What if you do not have landscape layout”?
- Or have not yet handled shutdown and restart”?

1 Solution

- Put an entry in AndroidManifest.xml saying that app runs
only in portrait mode (or only in landscape mode).

<activity android:nam
android:labe

e=".YourActivity"
I="@string/app_name"

android:-screcnOricntation="portrait >

More Reading
Jd JavaDoc: Activity

- http://developer.android.com/reference/android/app/Activity.html
¢ Introductory parts give lots of details

J Chapters
andling Activity Lifecycle Events and
andling Rotation

¢ From The Busy Coder’s Guide to Android Development
by Mark Murphy.

« http://commonsware.com/Android/

Sources

Ry My Eipy Hipy

L L

u

tp://en.wikipedia.org/wiki/JSON

tp:// www.w3schools.com/json/

tp://[son-schema.org

N
N
Nttp://Www.{son.org/
N
N

tp://www.nczonline.net/blog/2008/01/09/is-|son-

netter-than-xml/

nttp://en.wikipedia.org/wiki/SOAP _(protocol)

nttp://en.wikipedia.org/wiki/REST

nttp://stackoverflow.com/questions/16626021/json-

rest-soap-wsdl-and-soa-how-do-they-all-link-together

