
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

The image cannot
be displayed. Your
computer may not
have enough
memory to open the
image, or the image
may have been
corrupted. Restart
your computer, and

User Interface Design"
& Development – Part 2

UI Design - Part 2 2!

Goals of this Section
❑ Be able to create and use some more different widgets (views)

and features such as Spinners and Filters
❑ Share data between Activities using the Application object
❑ Understand how to develop and reuse Fragments in a multi-

screen app
❑ Be able to create and use a NavigationDrawer to

implement more effective navigation within an app (CoffeeMate
4.0+)

UI Design - Part 2 3!

Case Study!

UI Design - Part 2 4!

❑ CoffeeMate – an Android App to keep track of"
your Coffees, their details, and which ones you"
like the best (your favourites)

❑ App Features with Google+ Sign-In
■  List all your Coffees
■  View specific Coffee details
■  Filter Coffees by Name and Type
■  Delete a Coffee
■  List all your Favourite Coffees
■  View Coffees on a Map

CoffeeMate 3.0

Using Spinners
and

Filters

UI Design - Part 2 5!

CoffeeMate 3.0

Still no Persistence
in this Version

UI Design - Part 2 6!

CoffeeMate 3.0

■  4 new java source files
■  2 new xml layouts
■  1 new xml file for

resources (specifically
the Spinner widget,
arrays.xml)

UI Design - Part 2 7!

CoffeeMate 3.0

Using Spinners

UI Design - Part 2 8!

Overview - Spinners

UI Design - Part 2 9!

❑ Spinners provide a quick way to select one value from a set.
❑ In the default state, a spinner shows its currently selected

value.
❑ Touching the spinner displays a dropdown "

menu with all other available values, "
from which the user can select a new one.

Overview - Spinners

UI Design - Part 2 10!

❑ You can add a spinner to your layout with the Spinner
object. You should usually do so in your XML layout with a
<Spinner> element. For example:

❑ To populate the spinner with a list of choices, you then need
to specify a SpinnerAdapter in your Activity or Fragment
source code (next slide).

Populate the Spinner with User Choices

UI Design - Part 2 11!

q Then, bind to the Spinner widget and set its Adapter
(and Listener) to display the options to the user.

This is the data we use to populate our spinner widget

Populate the Spinner with User Choices

UI Design - Part 2 12!

13!UI Design - Part 2

CoffeeMate 3.0

Code
Highlights

(1)

Search * VERY similar to our Home Activity

UI Design - Part 2 14!

Only difference with ‘Home’ – we’ll cover this
Fragment in more detail in the labs

Favourites *

UI Design - Part 2 15!

EXACTLY similar to our Home Activity

Don’t even need to change the Fragment

CoffeeMate 3.0

Using Filters

UI Design - Part 2 16!

Filtering & Sorting
❑  ListView supports filtering of elements via its adapter.
❑  For example the ArrayAdapter class implements the Filterable interface and contains

a default filter implementation called ArrayFilter as an inner class.
❑  This default implementation allows you to filter based on a String, via

youradapter.getFilter().filter(searchString)

❑  Typically you might want to add an EditText field to your layout and attach a
TextChangeListener to it. (as with our example)

UI Design - Part 2 17!

Filtering & Sorting
❑  Because we’re using a Custom Adapter (our nice rows J) and a Custom object (a

Coffee) the default implementation isn’t sufficient for our needs.
❑  Our approach is to

■  create a Custom Filter (CoffeeFilter)
■  maintain a reference to in in our Fragment (CoffeeFragment)
■  tell the filter what and how to filter the data (our Coffee object)

❑  Our CoffeeFilter has two abstract methods we need to implement
■  FilterResults performFiltering(CharSequence constraint) : "

invoked in worker thread, that has the task to filter the results according to the
constraint

■  void publishResults(CharSequence constraint,FilterResults results) :
that has the task to show the result set created by performingFiltering method

❑  So let’s have a look…
UI Design - Part 2 18!

19!UI Design - Part 2

CoffeeMate 3.0

Code
Highlights

(2)

CoffeeFragment – Filtering *

UI Design - Part 2 20!

Declare a reference to our CoffeeFilter in our
Fragment

(so we can filter our ‘Favourites’)

If the associated Activity is ‘Favourites’, then
filter on “favourites”

CoffeeFragment – Filtering after Multiple Deletes *

UI Design - Part 2 21!

We need to filter again after deleting multiple
coffees to get our remaining ‘Favourites’.

SearchFragment – Filtering after Multiple Deletes *

UI Design - Part 2 22!

We Override the existing ‘deleteCoffees’ to
add some extra functionality

We need to filter again after deleting multiple
coffees to get our remaining ‘Favourites’ and/

or any filtered coffees on text. We’ll have a
closer look at this method next

CoffeeFragment – Helper Method *

UI Design - Part 2 23!

Filtering again (after deleting multiple coffees)
to get our remaining ‘Favourites’, if any.

Binding to the EditText and filtering again (after deleting
multiple coffees) to get our remaining coffees matching

certain text entered, if any.

CoffeeFilter (1)

Setting the text to filter on

A reference to our adapter so we
can update it directly

UI Design - Part 2 24!

CoffeeFilter (2) *

UI Design - Part 2 25!

Invoked in a worker thread to filter the data according to the prefix

Filtering on Spinner
Selection (no text entered)

– Triggered by

Filtering on Text –
Triggered by!

CoffeeFilter (3) *

UI Design - Part 2 26!

Invoked in the UI thread to publish the filtering results on the main UI thread
(usually the user interface)

CoffeeMate 3.0

Using the
Application Object

UI Design - Part 2 27!

Maintaining Global Application State
❑ Sometimes you want to store data, like global variables

which need to be accessed from multiple Activities –
sometimes everywhere within the application. In this
case, the Application object will help you.

❑ Activities come and go based on user interaction
❑ Application objects can be a useful ‘anchor’ for an

android app
❑ You can use it to hold information shared by all activities

28!UI Design - Part 2

Application Object Callbacks
❑  onConfigurationChanged() Called by the system when the device

configuration changes while your component is running.
❑  onCreate() Called when the application is starting, before any other

application objects have been created.
❑  onLowMemory() This is called when the overall system is running low

on memory, and would like actively running processes to tighten their
belts.

❑  onTerminate() This method is for use in emulated process
environments. It will never be called on a production Android device,
where processes are removed by simply killing them; no user code
(including this callback) is executed when doing so.

29!UI Design - Part 2

Refactor existing Activities/Classes
❑ In order to make full use of our Application object we need to

refactor some of the classes in the project.
❑ This will form part of the Practical Lab (Lab 4) but we’ll have a

quick look now at some of the refactoring that needs to be
done to both include, and make use of, our Application object.

UI Design - Part 2 30!

31!UI Design - Part 2

CoffeeMate 3.0

Code
Highlights

(3)

The Application Object *

Androidmanifest.xml!

UI Design - Part 2 32!

CoffeeMate 3.0 – code extracts *

UI Design - Part 2 33!

Our CoffeeMateApp reference

Binding to our Application Object

Adding a Coffee to our coffeeList via the
Application Object

CoffeeMate 4.0+

Using
The

Navigation Drawer

UI Design - Part 2 34!

Navigation Drawer Overview
❑  https://developer.android.com/

training/implementing-navigation/
nav-drawer.html

❑  The navigation drawer is a panel
that displays the app’s main
navigation options on the left edge
of the screen. It is hidden most of
the time, but is revealed when the
user swipes a finger from the left
edge of the screen or, while at the
top level of the app, the user
touches the app icon in the action
bar.

35!UI Design - Part 2

Navigation Drawer Overview
❑ Android Studio does a lot of the heavy lifting for you, but

generally the following steps are necessary to add a
Navigation Drawer to your app
■  Create drawer layout
■  Bind to navigation drawer layout
■  Handle navigation drawer click and
■  Update content based on user selection

36!UI Design - Part 2

Overview - Create Drawer Layout
❑ For creating a navigation drawer, first we need to declare the

drawer layout in your main activity where you want to show
the navigation drawer.

❑ You add
android.support.v4.widget.DrawerLayout as the
root view of your activity layout.

❑ As already mentioned, Android Studio does a lot of this for
you so it’s more about understanding how it all pieces
together to allow you to modify as necessary.

❑ We’ll use CoffeeMate as the example to illustrate…
37!UI Design - Part 2

Overview - Create Drawer Layout *

38!UI Design - Part 2

Overview - Create Drawer Layout *
❑  activity_home.xml contains

the Navigation Header
(nav_header_home) AND the
Navigation Drawer Menu
(activity_home_drawer) inside
a NavigationView.

❑  activity_home includes
app_bar_home which will
display our content

❑  Also, note the ‘ids’ of the
widgets (for later on)

39!UI Design - Part 2

UPDATE

40!UI Design - Part 2

UPDATE

41!UI Design - Part 2

Overview – nav_header_home *

42!UI Design - Part 2

Overview – activity_home_drawer *

43!UI Design - Part 2

Overview – app_bar_home *

44!UI Design - Part 2

Overview – content_home *

45!UI Design - Part 2

Overview – Bind to the Drawer Layout etc.
❑ Once you have the necessary layouts and menu in place, you

then need to bind to the Drawer and Navigation View to allow
you to handle the user navigation and switching content
based on user selection.

❑ In your onCreate()you’ll have something like the following

46!UI Design - Part 2

We also setup GooglePhoto and Email for the Drawer here (Labs)!

Overview – Bind to the Drawer Layout etc.
❑ You’ll probably want to display some kind of initial landing

page once the app starts so in our example, we load up the
list of user coffees (maintained in our CoffeeFragment).

❑ Again, in your onCreate() you’ll have something like the
following

❑ This creates a new instance of a CoffeeFragment and

replaces the fragment in our FrameLayout with this instance.
47!UI Design - Part 2

Overview – Handle Drawer Click & Update Content *
❑ To handle users menu selection we implement the following

48!UI Design - Part 2

Summary
❑ We looked at how to use Spinners and Filters to allow

users to Search on our list of coffees
❑ We’re now able to share data efficiently and easily between

Activities using the Application object
❑ We reused Fragments in a multi-screen app to go ‘Green’ –

(Reduce,Reuse,Recycle)
❑ And we made use of a NavigationDrawer to implement

more effective navigation within our app (CoffeeMate 4.0+)

UI Design - Part 2 49!

50!UI Design – Part 2

Questions?!

UI Design - Part 2 51!

Features Not Used in the!
Case Study!

!
q Spinners (setup via XML)!
q Context menus (long Click)!

q Notifications!

UI Design - Part 2 52!

Using Spinners !

UI Design - Part 2 53!

Approach : Choices in XML (NOT used in this Case Study)
❑  Idea

■  A combo box (drop down list of choices)
⬥ Similar purpose to a RadioGroup: to let the user choose

among a fixed set of options
❑  Main Listener types

■  AdapterView.OnItemSelectedListener
■  AdapterView.OnItemClickedListener

⬥  The first is more general purpose, since it will be invoked on
programmatic changes and keyboard events as well as
clicks.

UI Design - Part 2 54!

Approach (continued)
❑  Key XML attributes

■  android:id
⬥  You need a Java reference to assign an event handler

■  android:prompt
⬥  The text shown at the top of Spinner when user clicks to open it.

■  Since text is not shown when the Spinner is closed, the string used for the
prompt is typically also displayed in a TextView above the Spinner.

■  android:entries
⬥  An XML entry defining an array of choices. "

Can be in strings.xml or a separate file (e.g., arrays.xml as in our case study)
<string-array name="some_name">
 <item>choice 1</item>
 <item>choice 2</item>
 …
</string-array>

UI Design - Part 2 55!

OnItemSelectedListener (interface)

❑  onItemSelected
■  Invoked when an entry is selected. Invoked once when Spinner

is first displayed, then again for each time the user selects
something.

■  Arguments
⬥ AdapterView: the Spinner itself
⬥  View: the row of the Spinner that was selected
⬥  int: the index of the selection. Pass this to the Spinner’s

getItemAtPosition method to get the text of the selection.
⬥  long: The row id of the selected item

❑  onNothingSelected
■  Invoked when there is now nothing displayed. This cannot

happen due to normal user interaction, but only when you
programmatically remove an entry.

UI Design - Part 2 56!

XML: Sample Layout File Entry
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/spinner1_prompt"/>

 <Spinner
 android:id="@+id/spinner1"
 android:prompt="@string/spinner1_prompt"

 android:entries="@array/spinner1_entries"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

Same text used twice, since the text
is hidden when the Spinner is

closed.

An array of entries. If you have lots of arrays, you typically put
them in arrays.xml. However, if there’s just the one set of

choices, it makes more sense to keep the array of entries in
strings.xml with the spinner prompt and the spinner message

template.

UI Design - Part 2 57!

XML: Sample Strings File Entries
 <string name="spinner1_prompt">
 Current Android Vendors (Choices from XML)
 </string>
 <string-array name="spinner1_entries">
 <item>Acer</item>
 <item>Dell</item>
 <item>HTC</item>
 <item>Huawei</item>
 <item>Kyocera</item>
 <item>LG</item>
 <item>Motorola</item>
 <item>Nexus</item>
 <item>Samsung</item>
 <item>Sony Ericsson</item>
 <item>T-Mobile</item>
 <item>Neptune</item>
 </string-array>
 <string name="spinner_message_template">
 You selected \'%s\'.
 </string>

The event handler method will use
String.format, this template, and the

current selection to produce a message
that will be shown in a Toast when a

Spinner selection is made.

UI Design - Part 2 58!

Java (Relevant Parts)
public class SpinnerActivity extends Activity {
 private String mItemSelectedMessageTemplate;

 @Override

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.spinners);

 mItemSelectedMessageTemplate =
 getString(R.string.spinner_message_template);
 Spinner spinner1 = (Spinner)findViewById(R.id.spinner1);
 spinner1.setOnItemSelectedListener(new SpinnerInfo());

 }

 private void showToast(String text) {

 Toast.makeText(this, text, Toast.LENGTH_LONG).show();
 }

 // Continued on next slide with the SpinnerInfo inner class

UI Design - Part 2 59!

Java (Relevant Parts, Cont’d)
 private class SpinnerInfo implements OnItemSelectedListener {
 private boolean isFirst = true;

 @Override
 public void onItemSelected(AdapterView<?> spinner, View selectedView,
 int selectedIndex, long id) {
 if (isFirst) {
 isFirst = false;

 } else {
 String selection =
 spinner.getItemAtPosition(selectedIndex).toString();
 String message =
 String.format(mItemSelectedMessageTemplate, selection);
 showToast(message);
 }
 }

 @Override
 public void onNothingSelected(AdapterView<?> spinner) {
 // Won’t be invoked unless you programmatically remove entries
 }
 }

Don't want the Toast when the screen is first displayed, so ignore the
first call to onItemSelected. Other calls are due to user interaction.

UI Design - Part 2 60!

Results (Emulator)

UI Design - Part 2 61!

Adding a Context Menu!

UI Design - Part 2 62!

public class DemoActivity extends Activity {

 /** Called when the activity is first created.
*/

 @Override
 public void onCreate(Bundle

savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

registerForContextMenu(findViewById(R.id.someTextV
iewObject));

 }

Step 1 : Register View for a context menu
❑  By calling registerForContextMenu() and passing it a View (a TextView in

this example) you assign it a context menu.
❑  When this View (TextView) receives a long-press, it displays a context menu.

UI Design - Part 2 63!

Define menu’s appearance

❑  By overriding the activity's context menu create callback method,

onCreateContextMenu().

public void onCreateContextMenu(ContextMenu menu,
View v, ContextMenuInfo menuInfo) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.mymenu, menu);

 menu.setHeaderTitle("Please Choose an Option");
 menu.setHeaderIcon(R.drawable.myimage);

 }

Set the context menus prompt and icon – both
optional

Same menu options but
doesn’t have to be

UI Design - Part 2 64!

Define menu’s behavior

❑  By overriding your activity's menu selection callback method for context menu ,

onContextItemSelected().

public boolean
onContextItemSelected(MenuItem item) {

 Log.v("Context Menu","Item Selected : " +
 item.getTitle());

return false;
}

We’re just printing a message to the LogCat window, as we’re using
the same menu options, but you can put whatever you need here.

UI Design - Part 2 65!

Results on Emulator – A Sample App
Our TextView with associated Context

Menu

Same Options as a
standard Menu

UI Design - Part 2 66!

Status Bar Notifications!

UI Design - Part 2 67!

Status Bar Notifications (2)
❑  A status bar notification should be used for any case in which a background service needs

to alert the user about an event that requires a response.
❑  A background service should never launch an activity on its own, in order to receive user

interaction. The service should instead create a status bar notification that will launch the
activity when selected by the user.

UI Design - Part 2 68!

Status Bar Notifications (3)
To create a status bar notification:!

!
1. Get a reference to the NotificationManager:!

!
 String ns = Context.NOTIFICATION_SERVICE;

 NotificationManager mManager = (NotificationManager) getSystemService(ns);

!
2. Instantiate the Notification:!

!
 int icon = R.drawable.notification_icon;

 CharSequence tickerText = "Hello";
 long when = System.currentTimeMillis();

 Notification notification = new Notification(icon, tickerText, when);

!

UI Design - Part 2 69!

Status Bar Notifications (4)
3. Define the notification's message and PendingIntent:!

!
 Context context = getApplicationContext();

 CharSequence contentTitle = "My notification";
 CharSequence contentText = "Hello World!";

 Intent notificationIntent = new Intent(this, MyClass.class);
 PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

 notificationIntent, 0);

 notification.setLatestEventInfo(context, contentTitle, contentText,
 contentIntent);

!
4. Pass the Notification to the NotificationManager:!

 private static final int HELLO_ID = 1;

 mManager.notify(HELLO_ID, notification);

A description of an Intent and target action
to perform with it!

UI Design - Part 2 70!

Status Bar Notifications (5)
❑ Our Method Call
postStatusbarMessage(R.drawable.runner,

 "You Clicked the Runner",
 "Time to Log a Run",
 "You have clicked the Runner option",
 RunnerActivity.class);

icon Ticker text

Content title

Content text Activity to launch

UI Design - Part 2 71!

Status Bar Notifications (6)
private void postStatusbarMessage(int icon, String tickerText,

 String contentTitle, String contentText, Class<?> activityClass)
 {

 Intent notificationIntent = new Intent(this, activityClass);
 PendingIntent contentIntent = PendingIntent.getActivity(this, 0, notificationIntent, 0);

 Context context = getApplicationContext();
 long when = System.currentTimeMillis();

 Notification notification = new Notification(icon,tickerText,when+5000);

 notification.setLatestEventInfo(context, contentTitle, contentText, contentIntent);
!

 String ns = Context.NOTIFICATION_SERVICE;

 NotificationManager mManage = (NotificationManager)getSystemService(ns);

 notification.flags |= Notification.FLAG_AUTO_CANCEL;

 mManage.notify(ID, notification);
 ID++;
 }

UI Design - Part 2 72!

Results on Emulator
Status Bar Notifications

Posted Notifications added
when user selected a

particular menu option (run
or swim)

UI Design - Part 2 73!

