
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

User Interface Design"
& Development - Part 1

UI Design - Part 1 2!

Goals of this Section
❑ Understand the basics of Android UI Development
❑ Be able to create and use some more different widgets (views)

such as AdapterViews and ArrayAdapters
❑ Share data between Activities using Bundles (just a brief look, we’ll

cover it and more in detail, in the Persistence lecture notes)

❑ Understand how to develop and use Fragments in a "
multi-screen app

❑ Understand how to use a Contextual Menu to delete
multiple items from a list

UI Design - Part 1 3!

Mobile Development in General
❑ When developing software for the web or a desktop

computer, you only need to consider the mouse and the
keyboard.

❑ With a mobile device, you must take into account the
entire world around you (and your users)."

❑ The “60 second Vs 60 minute” Use Case

UI Design - Part 1 4!

Possible User Input Sources
❑  Keyboard"

❑  “Click” Tap via Touch (or Stylus)"

❑ GPS or Network Location"

❑  Accelerometer Motion"

❑ Orientation / Compass / Altitude

❑  Vibration"

❑  Sound / Music"

❑  Environment Lighting"

❑ Multi-touch & Gestures"

❑ Device Security / Loss

UI Design - Part 1 5!

User Interface
❑ Your app's user interface is everything that the user can

see and interact with. Android provides a variety of pre-
built UI components such as structured layout objects
and UI controls that allow you to build the graphical user
interface for your app. Android also provides other UI
modules for special interfaces such as dialogs,
notifications, and menus.

6!UI Design - Part 1

App Structure & The Android Framework
❑ The Android UI framework is "

o r g a n i s e d a r o u n d t h e
common MVC pattern.

UI Design - Part 1 7!

Some General UI Guidelines & Observations – (UIGOs)
❑ Activity and Task Design

■  Activities are the basic, independent building blocks of
applications. As you design your application's UI and
feature set, you are free to re-use activities from other
applications as if they were yours, to enrich and
extend your application.

❑ “Everything is a Resource”
■  Many of the steps in Android programming depend on

creating resources and then loading them or
referencing them (in XML files) at the right time

UI Design - Part 1 8!

UIGOs - Screen Orientation
❑ People can easily change the orientation by which they

hold their mobile devices
■  Mobile apps have to deal with changes in orientation

frequently
■  Android deals with this issue through the use of

resources (more on this later)
❑ Start with Portrait Orientation

■  It is natural to start by designing the UI of your main
activity in portrait orientation

■  That is the default orientation in the Eclipse plug-in
UI Design - Part 1 9!

UIGOs - Unit Sizes
❑ Android supports a wide variety of unit sizes for specifying UI

layouts;
■  px (device pixel), in, mm, pt (1/72nd of an inch)

❑ All of these have problems creating UIs that work across
multiple types of devices
■  Google recommends using resolution-independent units

⬥ dp (or dip): density-independent pixels
⬥ sp: scale-independent pixels

❑ In particular, use sp for font sizes and dp for everything else

UI Design - Part 1 10!

UIGOs – Layouts (most common)
❑ LinearLayout: Each child view is placed after the previous

one in a single row or column
❑ RelativeLayout: Each child view is placed in relation to other

views in the layout or relative to its parent’s layout
❑ FrameLayout: Each child view is stacked within a frame,

relative to the top-left corner. Child views may overlap
❑ TableLayout: Each child view is a cell in a grid of rows and

columns
❑ ConstraintLayout: Similar to RelativeLayout but more flexible

and easier to use in Android Studio
UI Design - Part 1 11!

UIGOs - Specifying the Size of a View
❑ We’ve previously discussed the use of resolution-

independent measurements for specifying the size of a
view

❑ These values go in the XML attributes
■  android:layout_width and android:layout_height

❑ But, you can get more flexibility with
■  fill_parent: the child scales to the size of its parent
■  wrap_content: the parent shrinks to the size of the

child

UI Design - Part 1 12!

Case Study!
❑ CoffeeMate – an Android App to keep track of"

your Coffees, their details, and which ones you"
like the best (your favourites)

❑ App Features (with Google+ Sign-In)
■  List all your Coffees
■  View specific Coffee details
■  Filter Coffees by Name and Type
■  Delete a Coffee
■  List all your Favourite Coffees
■  View Coffees on a Map
 UI Design - Part 1 13!

CoffeeMate 2.0

Using Fragments
and

Custom ArrayAdapters

UI Design - Part 1 14!

CoffeeMate 2.0

No Persistence in this Version UI Design - Part 1 15!

CoffeeMate 2.0

No Persistence in this Version UI Design - Part 1 16!

CoffeeMate 2.0

■  5 Activity source files
■  9 xml Layouts & Menus
■  Custom Adapter classes
■  1 Fragment
■  1 Model

UI Design - Part 1 17!

CoffeeMate 2.0

Using Fragments

UI Design - Part 1 18!

Fragments - Recap
❑  Fragments represents a behaviour or a portion of a user interface in

an Activity.
❑  You can combine multiple fragments in a single activity and reuse a

single fragment in multiple activities.
❑  Each Fragment has its own lifecycle (next slide).
❑  A fragment must always be embedded in an activity.
❑  You perform a fragment transaction to add it to an activity.
❑ When you add a fragment as a part of your activity layout, it lives in a

ViewGroup inside the activity's view hierarchy and the fragment
defines its own view layout.

UI Design - Part 1 19!

❑  You should design each fragment as a modular and reusable
activity component.

❑ When designing your application to support both tablets and
handsets, you can reuse your fragments in different layout
configurations to optimize the user experience based on the
available screen space.

❑  For example, on a handset, it might be necessary for separate
fragments to provide a single-pane UI when more than one
cannot fit within the same activity. (Next Slide)

20!

Designing Fragments *

UI Design - Part 1

21!

Designing Fragments

An example of how two UI modules defined by fragments can be combined into
one activity for a tablet design, but separated for a handset design.!

UI Design - Part 1

The Fragment Life Cycle
❑  To create a fragment, you must

subclass Fragment (or an existing
subclass of it).

❑  Has code that looks a lot like an Activity.
Contains callback methods similar to an
activity, such as onCreate(),
onStart(), onPause(), and onStop().

❑  Usually, you should implement at least
onCreate(), onCreateView() and
onPause()

22!UI Design - Part 1

Fragment Managers & Transactions
❑  A great feature about using fragments in your activity is the ability to

add, remove, replace, and perform other actions with them, in response
to user interaction.

❑  Each set of changes that you commit to the activity is called a
transaction and you can perform one by using APIs in
FragmentTransaction.

❑  You can also save each transaction to a back stack managed by the
activity, allowing the user to navigate backward through the fragment
changes (similar to navigating backward through activities).

23!UI Design - Part 1

Fragment Managers & Transactions *
❑  You can acquire an instance of FragmentTransaction from the
FragmentManager like this:

❑  Each transaction is a set of changes that you want to perform at the
same time. You can set up all the changes you want to perform for a
given transaction using methods such as add(), remove(), and
replace().

❑  Then, to apply the transaction to the activity, you must call commit().
24!UI Design - Part 1

methods	can	be	‘chained’	

Fragment Managers & Transactions
❑ Before you call commit(), however, you might want to call
addToBackStack(), in order to add the transaction to a back stack of
fragment transactions.

❑  This back stack is managed by the activity and allows the user to return
to the previous fragment state, by pressing the Back button.

❑  For example, here's how you can replace one fragment with another,
and preserve the previous state in the back stack: (next slide)

25!UI Design - Part 1

Fragment Managers & Transactions *

❑  In this example, newFragment replaces whatever fragment (if any) is currently in
the layout container identified by the R.id.fragment_container ID. By calling
addToBackStack(), the replace transaction is saved to the back stack so the
user can reverse the transaction and bring back the previous fragment by
pressing the Back button.

26!UI Design - Part 1

CoffeeMate 2.0

Code
Highlights

(1)

27!UI Design - Part 1

Base

UI Design - Part 1 28!

A Bundle for passing data between
activities

A reference to our Custom
Fragment

Home

UI Design - Part 1 29!

Creating a Fragment instance and adding it to
our Home Activity (we’ll take a close look at

the Fragment class next)

Note how we’ve ‘chained’ the method calls

Our ‘CoffeeFragment’ Fragment

UI Design - Part 1 30!

Adding a Custom Adapter to our Fragment
to manage the list of coffees

(more on this later)

Note the type of Fragment
we extend from

Introducing Adapters (Big part of this Case Study)
❑  Adapters are bridging classes that bind data to Views (eg ListViews) used in the

UI.
■  Responsible for creating the child Views used to represent each item within the parent View,

and providing access to the underlying data
❑  Views that support adapter binding must extend the AdapterView abstract

class.
■  You can create your own AdapterView-derived controls and create new Adapter classes to

bind them.
❑  Android supplies a set of Adapters that pump data into native UI controls (next

slide)

UI Design - Part 1 31!

Introducing Adapters (cont’d)
❑  Because Adapters are responsible for supplying the data AND for creating

the Views that represent each item, they can radically modify the appearance and
functionality of the controls they’re bound to.

❑  Most Commonly used Adapters
■  ArrayAdapter

⬥  uses generics to bind an AdapterView to an array of objects of the specified class.
⬥  By default, uses the toString() of each object to create & populate TextViews.
⬥  Other constructors available for more complex layouts (as we will see later on)
⬥  Can extend the class to use alternatives to simple TextViews (as we will see later on)

❑  See also SimpleCursorAdapter – attaches Views specified within a layout to the columns of
Cursors returned from Content Provider queries.

UI Design - Part 1 32!

CoffeeMate 2.0

Using
Custom ArrayAdapters

UI Design - Part 1 33!

Customizing the ArrayAdapter
❑  By default, the ArrayAdapter uses the toString() of the object array it’s

binding to, to populate the TextView available within the specified layout
❑  Generally, you customize the layout to display more complex views by..

■  Extending the ArrayAdapter class with a type-specific variation, eg

■  Override the getView() method to assign object properties to layout View objects. "
(see our case study example next)

UI Design - Part 1 34!

The getView() Method
❑  Used to construct, inflate, and populate the View that will be displayed within the

parent AdapterView class (eg a ListView inside our ListFragment) which is
being bound to the underlying array using this adapter

❑  Receives parameters that describes
■  The position of the item to be displayed
■  The View being updated (or null)
■  The ViewGroup into which this new View will be placed

❑  Returns the new populated View instance as a result

❑  A call to getItem() will return the value (object) stored at the specified index in the
underlying array

UI Design - Part 1 35!

Adapters & ListViews
❑  A ListView receives its data via an Adapter. The adapter also defines how each

row is the ListView is displayed.
❑  The Adapter is assigned to the list via the setAdapter() /

setListAdapter() method on the ListView / ListFragment object.
❑  ListView calls the getView() method on the adapter for each data element. In

this method the adapter determines the layout of the row and how the data is
mapped to the Views (our widgets) in this layout.

❑  Your row layout can also contain Views which interact with the underlying data
model via the adapter. E.G. our ‘Delete’ option – see later.

UI Design - Part 1 36!

CoffeeMate 2.0

Code
Highlights

(2)

37!UI Design - Part 1

CoffeeListAdapter

UI Design - Part 1 38!

Our constructor, associating our data (our
list of Coffees) with the view we want to

bind to (coffeerow)

A reference for deleting a coffee

Every time this method is called (based on the
position) we create a new ‘CoffeeItem’ – a new

‘Row’ to add to the Parent ViewGroup (the ListView)

CoffeeItem
This class represents a

single row in our list

UI Design - Part 1 39!

Inflating the ‘Current Row’

Updating the ‘Row’ with Coffee Data

‘Tagging’ the Delete Image with a
Coffee for Deleting

Setting the ‘Rows’ id to the
Coffee id for Editing

coffeerow (Our Custom Layout)

Each time getView() is called, it creates a
new CoffeeItem and binds the individual
Views (widgets) above, to each element
of the object array in the ArrayAdapter.

UI Design - Part 1 40!

Resulting ListView (inside our Fragment)

Our Setup method
initially gives us this list

UI Design - Part 1 41!

CoffeeMate 2.0

Code
Highlights

(3)

42!UI Design - Part 1

Edit a Coffee – class CoffeeFragment

UI Design - Part 1 43!

Remember we set the id of the
‘row’ (v) ? Here we retrieve it,
and store it in a Bundle so we

know which coffee to edit

Edit a Coffee – class Edit

UI Design - Part 1 44!

Retrieving the “id” of our selected
coffee from the bundle and

finding it in the arraylist

Assigning our
Coffee object
details to the

widgets on our
layout

Delete a Coffee – class CoffeeFragment

UI Design - Part 1 45!

If the Views ‘Tag’ is a Coffee
Object, we know the delete

image was clicked, so we can
delete the coffee

As well as removing the coffee from our global list, we
need to remove it from the adapter too "

(or otherwise create a whole new adapter reference)

CoffeeMate 2.0

Using
Contextual Menus

(for multiple selection & deletion)

UI Design - Part 1 46!

Contextual ActionMode / Action Bar
❑  The Contextual Action Mode is a system implementation of ActionMode

that focuses user interaction toward performing contextual actions.
❑ When a user enables this mode by selecting an item, a Contextual

Action Bar appears at the top of the screen to present actions the user
can perform on the currently selected item(s).

❑  A Contextual Action Bar (CAB) in Android is a temporary action bar that
overlays the app's action bar for the duration of a particular sub-task.

❑  Triggered by Long Press Gesture - used to handle multi-select and
contextual actions.

❑  Prior to Android 3.0, a Floating Context Menu would have been
displayed on the Long Press Gesture.

UI Design - Part 1 47!

1. Floating Context Menu (Android 3.0-)

UI Design - Part 1 48!

Long Press

2. Contextual Action Bar (Android 3.0+)

UI Design - Part 1 49!

Long Press

Original Menu restored
upon deletion

Implementing a Contextual Action Bar
1.  Design your resources/xml (Context Menu, background style,

AppTheme style options).
2.  Implement the AbsListView.MultiChoiceModeListener and

set it to your ViewGroup (e.g. ListView).
3.  Configure your ViewGroup for multiple selection of items.
4.  Implement the necessary behaviour in the Listener Callbacks.

UI Design - Part 1 50!

CoffeeMate 2.0

Code
Highlights

(4)

51!UI Design - Part 1

1. Design your resources / xml
❑ Firstly, decide what you want your context menu to look like

UI Design - Part 1 52!

Menu ID

1. Design your resources / xml
❑ delete_list_context.xml

UI Design - Part 1 53!

Menu ID

1. Design your resources / xml
❑ And the items background style, when selected

UI Design - Part 1 54!

1. Design your resources / xml
❑ And how to overlay the context menu on the "

main app menu (in styles.xml)

UI Design - Part 1 55!

2. Implement AbsListView.MultiChoiceModeListener
❑ First, update your Activity/Fragment *

❑ We’ll look at implementing the callbacks a bit later (just accept

the default implementations for now)

UI Design - Part 1 56!

3. Configure your ViewGroup *
❑ Set your listener to the ViewGroup (or ListView in our case) like

so and specify multiple selections is possible

UI Design - Part 1 57!

Note, Android’s system
List reference

4. Implement Listener Callbacks *
❑ Here’s a full list of all the callback methods (and one helper)

UI Design - Part 1 58!

4. Implement Listener Callbacks
❑ Inflating the Context Menu

❑ This replaces or ‘overlays’ the current app "
menu

UI Design - Part 1 59!

4. Implement Listener Callbacks
❑ Triggered when MenuItem selected

❑ In our case, we delete the selected coffees

UI Design - Part 1 60!

4. Implement Listener Callbacks
❑ Triggered when MenuItem selected

❑ In our case, we delete the selected coffees

UI Design - Part 1 61!

CoffeeMate 3.0

Still no Persistence
in this Version

UI Design - Part 1 62!

Questions?!

UI Design - Part 1 63!

