
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Anatomy

Android Anatomy
 2!

Agenda

❑ Quick Recap - What is Android (and it’s Layered Framework)

❑ Important Android Application Components

❑ The Android Application (Activity/Fragment) Life Cycle

❑ The Online Developer Resources

❑ Our “CoffeeMate” Case Study – a first look…

Android Anatomy
 3!

What is Android? (Recap)

Android Anatomy
 4!

❑  An open source software toolkit created, updated and maintained
by Google and the OHA

■  30+ technology companies

■  Commitment to openness, shared vision, and concrete

plans

❑  Designed for Mobile Devices

■  2.X series and previous: mobile phones

■  3.X series: extended to also support tablets

■  4.X series: unified API framework

■  5.X / 6.X series: more integration with Google services and more

tablet-specific features, run on ‘wearable’ devices, TV, vehicles
etc..

❑  Comprehensive Framework

Layered Software Framework (s/w stack)

Android Anatomy
 5!

Key Parts of the Framework

❑ The key parts of the Android Framework are

■  The Activity Manager: starts, stops, pauses and resumes
applications

■  The Resource Manager: allows apps to access the
resources bundled with them

■  Content Providers: objects that encapsulate data that is
shared between applications

■  Location Manager and Notification Manager (events)

■  Media Manager for Audio and Video playback

Android App Components

❑  App components are the essential building blocks of an Android

app. Each component is a different point through which the
system can enter your app.

❑ Not all components are actual entry points for the user and some
depend on each other, but each one exists as its own entity and
plays a specific role—each one is a unique building block that
helps define your app's overall behavior.

❑  There are four main different types of app components. Each type
serves a distinct purpose and has a distinct lifecycle that defines
how the component is created and destroyed.

❑ We’ll briefly mention a few other components (of sorts) that also
make up your App.

7!Android Anatomy

Android App Components

1.  Activities

■  represents a single screen with a user interface

■  acts as the ‘controller’ for everything the user sees on its associated screen

■  implemented as a subclass of Activity

■  e.g. email app (listing your emails)

2.  Services

■  a component that runs in the background to perform long-running operations or

to perform work for remote processes

■  does not provide a user interface

■  can be started by an activity

■  is implemented as a subclass of Service

■  e.g. music player (playing in background)

 8!Android Anatomy

Android App Components

9!Android Anatomy

3.  Content Providers

■  manages a shared set of app data

■  can store the data in the file system, an SQLite database, on the web, or any

other persistent storage location your app can access

■  through the content provider, other apps can query or even modify the data

■  e.g. Users Contacts (your app could update contact details)

4.  Broadcast Receivers

■  a component that responds to system-wide broadcast announcements

■  broadcasts can be from both the system and your app

■  implemented as a subclass of BroadcastReceiver and each broadcast is

delivered as an Intent object

■  e.g. battery low (system) or new email (app via notification)

 How it all Fits Together *

•  Based on the Model View Controller

design pattern.

•  Don’t think of your program as a linear

execution model:

•  Think of your program as existing in

logical blocks, each of which performs
some actions.

•  The blocks communicate back and forth
via message passing (Intents)

•  Added advantage, physical user
interaction (screen clicks) and inter
process interaction can have the same
programming interface

•  Also the OS can bring different pieces of
the app to life depending on memory
needs and program use

•  For each distinct logical piece of program
behavior you’ll write a Java class (derived
from a base class).

•  Activities/Fragments: Things the user
can see on the screen. Basically, the
‘controller’ for each different screen in
your program.

•  Services: Code that isn’t associated
with a screen (background stuff, fairly
common)

•  Content providers: Provides an
interface to exchange data between
programs (usually SQL based)

•  You’ll also design your layouts (screens),
with various types of widgets (Views),
which is what the user sees via Activities &
Fragments

Android Anatomy
 10!

See the Appendix for a more detailed !
explanation of these components!

The (Application) Activity Life Cycle *

❑ Android is designed around the unique requirements of

mobile applications.

■  In particular, Android recognizes that resources (memory and battery, for

example) are limited on most mobile devices, and provides mechanisms to
conserve those resources.

❑ The mechanisms are evident in the Android Activity
Lifecycle, which defines the states or events that an
activity goes through from the time it is created until it
finishes running.

See the Appendix for a more detailed explanation of these ‘states’!

The (Application) Activity Life Cycle

❑ An application itself is a set of activities with a Linux process

to contain them

■  However, an application DOES NOT EQUAL a process

■  Due to (the previously mentioned) low memory conditions,

an activity might be suspended at any time and its process
be discarded

⬥ The activity manager remembers the state of the activity

however and can reactivate it at any time

⬥ Thus, an activity may span multiple processes over the

life time of an application

Android Anatomy
 12!

The Activity Life Cycle *

•  The Activity has a number of

predefined functions that you
override to handle events from
the system.

•  If you don’t specify what should
be done the system will perform
the default actions to handle
events.

•  Why would you want to handle
events such as onPause(),
etc… ?

•  You will probably want to do

things like release resources,
stop network connections,
back up data if necessary, etc.

Android Anatomy
 13!

The Activity Life Cycle

Android Anatomy
 14!

❑ At the very minimum ,you
need (and is supplied)
onCreate()

❑ onStop() and
onDestroy() are
optional and may never
be called

❑ If you need persistence,
the save needs to
happen in onPause()

Fragments

•  Fragments represents a behaviour or a portion

of a user interface in an Activity.

•  Introduced in Android 3.0 (API level 11),

primarily supports more dynamic and flexible UI
designs on larger screens.

•  You can combine multiple fragments in a single
activity to build a multi-pane UI and reuse a
fragment in multiple activities.

•  Each Fragment has its own lifecycle, receives its
own input events, and you can add or remove it
while the activity is running.

•  A fragment must always be embedded
in an activity and the fragment's lifecycle
is directly affected by the host activity's
lifecycle.

•  When you perform a fragment
transaction, you can also add it to a
back stack that's managed by the
activity.

•  The back stack allows the user to
reverse a fragment transaction (navigate
backwards), by pressing
the Back button.

•  When you add a fragment as a part of
your activity layout, it lives in a
ViewGroup inside the activity's view
hierarchy and the fragment defines its
own view layout.

Android Anatomy
 15!

❑  You should design each fragment as a modular and reusable
activity component.

❑ When designing your application to support both tablets and
handsets, you can reuse your fragments in different layout
configurations to optimize the user experience based on the
available screen space.

❑  For example, on a handset, it might be necessary for separate
fragments to provide a single-pane UI when more than one
cannot fit within the same activity. (Next Slide)

16!Android Anatomy

Designing Fragments *

17!Android Anatomy

Designing Fragments

An example of how two UI modules defined by fragments can be combined into
one activity for a tablet design, but separated for a handset design.!

The Fragment Life Cycle

❑  To create a fragment, you must

subclass Fragment (or an existing
subclass of it).

❑  Has code that looks a lot like an Activity.
Contains callback methods similar to an
activity, such as onCreate(),
onStart(), onPause(), and onStop().

❑  Usually, you should implement at least
onCreate(), onCreateView() and
onPause()

Android Anatomy
 18!

LifeCycle
Example (1) *

19!Android Anatomy

User Launches App

20!Android Anatomy

User Selects ‘Home’

LifeCycle
Example (2) *

21!Android Anatomy

User restarts App

LifeCycle
Example (3) *

22!Android Anatomy

User Selects ‘Back’

LifeCycle
Example (4) *

So, after all that, how do I Design my App?

•  The way the system architecture is

set up is fairly open:

•  App design is somewhat up to

you, but you still have to live with
the Android execution model.

•  Start with the different screens/
layouts (Views) that the user will
see. These are controlled by the
different Activities (Controllers) that
will comprise your system.

•  Think about the transitions
between the screens, these will be
the Intents passed between the
Activities.

•  Think about what background services you
might need to incorporate.

•  Exchanging data

•  Listening for connections?

•  Periodically downloading network

information from a server?

•  Think about what information must be

stored in long term memory (SQLite) and
possibly design a content provider around it.

•  Now connect the Activities, services, etc…
with Intents…

•  Don’t forget good OOP J and#

•  USE THE ONLINE DEVELOPER
DOCs & GUIDES (next few slides)

Android Anatomy
 23!

Android Anatomy
 24!

Android Anatomy
 25!

Android Anatomy
 26!

Android Anatomy
 27!

Android Anatomy
 28!

29!Android Anatomy

Common Controls

Android Anatomy
 30!

Buttons

Android Anatomy
 31!

TextFields (EditTexts & TextViews)

Android Anatomy
 32!

33!Android Anatomy

RadioGroup / RadioButtons

Android Anatomy
 34!

35!Android Anatomy

36!Android Anatomy

Pickers

Android Anatomy
 37!

Progress Bars

Android Anatomy
 38!

39!Android Anatomy

Ultimate Case Study!

Android Anatomy
 40!

CoffeeMate 1.0

Using Buttons,

Multiple Layouts

&

Menus

Android Anatomy
 41!

CoffeeMate 1.0

Android Anatomy
 42!

Project Structure – Version 1.0

■  5 java source files

■  5 xml layouts

■  1 xml file for a menu

■  4 separate xml files for

color, string, style &
dimension resources

Android Anatomy
 43!

Layout – home

Android Anatomy
 44!

XML View – home *

Android Anatomy
 45!

Layout – content_home

Android Anatomy
 46!

Layout – Outline View *

❑  Keep track of Outline view

❑ Name controls appropriately

Android Anatomy
 47!

XML View - content_home *

This part defines the 3 buttons
shown on the layout summary

slide. Each button is given an id
so that it can be found in Java

via ‘findViewById’, then
assigned an event handler via
setOnClickListener (or onClick)

The text (Button label) is taken

from strings.xml instead of
entered directly here, because

the same label will also be used
for other widgets later on.

Android Anatomy
 48!

Note the use of
an ‘onClick’

attribute!

XML View - content_home *

The add and help
screens are built and
designed in a similar

manner

Android Anatomy
 49!

CoffeeMate Event Handler *

Android Anatomy
 50!

content_home!

Note the use of a ‘View’ object

strings.xml *

content_home.xml (and the other
layouts) refer to these names with

@string/appName, @string/
addACoffeeLbl etc.

Each string is used as a resource
for one or more of the widgets on

out layouts.

colors.xml & styles.xml are very
similar in terms of content

Android Anatomy
 51!

Menus in CoffeeMate

Pressing the “Menu” button on the emulator brings up a
menu with the following entries

(we’ll modify this slightly in CoffeeMate 2.0)

Android Anatomy
 52!

Menus

❑ Menus are a common user interface component in many types

of applications.

❑ To provide a familiar and consistent user experience, you

should use the Menu APIs to present user actions and other
options in your activities.

❑ Beginning with Android 3.0 (API level 11), Android-powered
devices are no longer required to provide a
dedicated Menu button.

■  instead provide an action bar to present common user

actions.

Android Anatomy
 53!

Options Menu & Action Bar

❑ The options menu is the primary collection of menu items for

an activity.

■  It's where you should place actions that have a global

impact on the app, such as “Info”, “Help” and “Home” etc.

❑ If you're developing for Android 2.3 or lower, users can reveal

the options menu panel by pressing the Menu button.

❑ On Android 3.0 and higher, items from the options menu are

presented by the action bar as a combination of on-screen
action items and overflow options.

Android Anatomy
 54!

Enabling/Disabling Menu Items on the fly

❑ There may be times where you don’t want all your menu

options available to the user under certain situations

■  e.g – if you’ve no donations, why let them see the report?

❑ You can modify the options menu at runtime by overriding the
onPrepareOptionsMenu method

■  called each and every time the user presses

the MENU button.

Android Anatomy
 55!

Menus in CoffeeMate *

Menu Specification!

Note the use of
an ‘onClick’

attribute!

Android Anatomy
 56!

CoffeeMate Menu Event Handler *

Android Anatomy
 57!

Menu Specification!

inflate this resource as a ‘Menu’ (creates the menu)

Note the use of a ‘MenuItem’ object

Aside - Why a ‘Base’ Class? *

58!Android Anatomy

❑ Green Programming – Reduce, Reuse, Recycle

■  Reduce the amount of code we need to implement

the functionality required (Code Redundancy)

■  Reuse common code throughout the app/project

where possible/appropriate

■  Recycle existing code for use in other apps/projects

❑ All good for improving Design

CoffeeMate - Menu Event Handler Alternative

‘Help’ Screen launched

check which ‘menu item’ was
selected (by id)

Android Anatomy
 59!

Switching Activities - General Approach

❑ Switch between Activities with Intents when

■  Main screen has buttons and/or menus to navigate to other
Activities (your intent)

■  Return to original screen with “back” button (system intent)

❑ Syntax required to start new Activity

■  Java

Intent goToActivity = new Intent(this,OtherActivity.class);
startActivity(goToActivity);

■  XML

⬥ Requires an entry in AndroidManifest.xml (runtime error otherwise!)

Android Anatomy
 60!

CoffeeMate 1.0

Code

Highlights

Android Anatomy
 61!

class Base (our superclass) *

A method to display a Dialog Window in the
current Activity

If you have never seen wildcards in generics
before, this just means that we can pass in

any subclass of Activity (as with Help &
Home below).

our list of Coffees (available/shared
between all our Activities)

Android Anatomy
 62!

class Add (1)

Android Anatomy
 63!

Our Listener Interface

Binding to our Widgets

Attaching the Listener to the button

class Add (2)

Android Anatomy
 64!

Our Event Handler Code

Adding the Coffee to our List

Returning to our ‘Home’ Activity

Questions? !

Android Anatomy
 65!

Appendix!

Android Anatomy
 66!

Android Components!

Android Anatomy
 67!

Content Providers (1)

❑  A component that stores and retrieves data and make it

accessible to all applications.

■  uses a standard interface (URI) to fulfill requests for data from other applications & it’s

one way to share data across applications.

⬥  e.g. android.provider.Contacts.Phones.CONTENT_URI

■  Android ships with a number of content providers for common data types (audio,
video, images, personal contact information, and so on) - SQLite DB

■  Android 4.0 introduces the Calendar Provider.

⬥  uri - Calendars.CONTENT_URI;

Android Anatomy
 68!

Content Providers (2)

•  Content providers abstract data storage

to other applications, activities, services,
etc…

•  Roughly SQL based.

•  You construct a ContentProvider class

that will override methods such as
insert(), delete(), and update().

•  Then you register your content provider
with a URI to handle different types of
objects.

•  A Unique Resource Identifier is kind of like a URL

•  For example, let’s say we want our
content provider to allow other
applications to access our database
of bicycles and also customers.

•  We define methods for inserting,
deleting, updating, etc… bicycles
and customers.

•  Then we publish two URIs:

•  BICYCLES_URI

•  CUSTOMERS_URI

•  Maybe more URIs for accessing
bicycles indexed by serial number?

Android Anatomy
 69!

Broadcast Receivers

❑  A component designed to respond to broadcast Intents.

■  Receives system wide messages and implicit intents

■  can be used to react to changed conditions in the system (external notifications or

alarms).

■  An application can register as a broadcast receiver for certain events and can be

started if such an event occurs. These events can come from Android itself (e.g.,
battery low) or from any program running on the system.

❑  An Activity or Service provides other applications with access to its
functionality by executing an Intent Receiver, a small piece of code
that responds to requests for data or services from other activities.

Android Anatomy
 70!

The Layered Framework!
slides paraphrase a blog post by Tim Bray (co-inventor of XML and currently

employed by Google to work on Android)!
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is!

!

Android Anatomy
 71!

The Layered Framework (1)

❑ Applications Layer

■  Android provides a set of core applications:

ü  Email Client

ü  SMS Program

ü  Calendar

ü  Maps

ü  Browser

ü  Contacts

ü  YOUR APP

ü  Etc

■  All applications are written using the Java language. These applications are executed by the

Dalvik Virtual Machine (DVM), similar to a Java Virtual Machine but with different bytecodes

Android Anatomy
 72!

The Layered Framework (2)

❑ Application Framework Layer

■  Enabling and simplifying the reuse of components

⬥  Developers have full access to the same framework APIs used by the core applications.

⬥  Users are allowed to replace components.

■  These services are used by developers to create Android applications that can be run in
the emulator or on a device

■  See next slide for more…..

Android Anatomy
 73!

The Layered Framework (3)

❑ Application Framework Layer Features

Feature
 Role

View
System

Used to build an application, including lists, grids, text
boxes, buttons, and embedded web browser

Content
Provider

Enabling applications to access data from other
applications or to share their own data

Resource
Manager

Providing access to non-code resources (localized strings, graphics, and layout
files)

Notification
Manager

Enabling all applications to display custom alerts in the
status bar

Activity
Manager

Managing the lifecycle of applications and providing
a common navigation (back) stack

We’ll be covering the above in more detail later on...!

Android Anatomy
 74!

The Layered Framework (4)

❑ Libraries Layer

■  Including a set of C/C++ libraries used by

components of the Android system

■  Exposed to developers through the Android

application framework

System C library/libc - a BSD (Berkeley Software Distribution) -derived implementation
of the standard C system library (libc), tuned for embedded Linux-based devices!

!
Media Framework/Libraries - based on PacketVideo's OpenCORE; the libraries

support playback and recording of many popular audio and video formats, as well
as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG!

!
Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications!
!

WebKit/LibWebCore - a modern web browser engine which powers both the
Android browser and an embeddable web view!

!
SGL (Scene Graph Library) - the underlying 2D graphics engine!

!
3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

either hardware 3D acceleration (where available) or the included, highly optimized
3D software rasterizer (shapes->pixels)!

!
FreeType - bitmap and vector font rendering!

!
SQLite - a powerful and lightweight relational database engine available to all

applications!

Android Anatomy
 75!

The Layered Framework (5)

❑ Core Runtime Libraries#

(changing to ART in Kit Kat)

■  Providing most of the functionality available in the core libraries of the Java language

■  APIs

§  Data Structures

§  Utilities

§  File Access

§  Network Access

§  Graphics

§  Etc

Next Slide!

Android Anatomy
 76!

The Layered Framework (6)

❑ Dalvik Virtual Machine (DVM)

§  Provides an environment on which every Android application runs

§  Each Android application runs in its own process, with its own instance of the Dalvik VM.

§  Dalvik has been written such that a device can run multiple VMs efficiently.

❑  Android Runtime (ART) 4.4 #

(see slide 12)

Android Anatomy
 77!

The Layered Framework (7)

❑ Dalvik Virtual Machine (Cont’d)

ü  Executing the Dalvik Executable (.dex) format

Ø  .dex format is optimized for minimal memory footprint.

Ø  Compilation

ü  Relying on the Linux Kernel for:

Ø  Threading

Ø  Low-level memory management

Android Anatomy
 78!

ART – Android Runtime

❑  Handles app execution in a fundamentally different way from Dalvik.

❑  Current runtime relies on a JIT compiler to interpret original bytecode

■  In a manner of speaking, apps are only partially compiled by developers

■  resulting code must go through an interpreter on a user's device each and every time it is run == Overhead

+ Inefficient

■  But the mechanism makes it easy for apps to run on a variety of hardware and architectures.

❑  ART pre-compiles that bytecode into machine language when apps are first installed,
turning them into truly native apps.

■  This process is called Ahead-Of-Time (AOT) compilation.

❑  By removing the need to spin up a new VM or run interpreted code, startup times can be
cut down immensely and ongoing execution will become faster.

Android Anatomy
 79!

The Layered Framework (8)

❑ Linux Kernel Layer

❑  At the bottom is the Linux kernel that has been augmented with extensions for Android

■  the extensions deal with power-savings, essentially adapting the Linux kernel to run on mobile devices

❑  Relying on Linux Kernel 2.6 for core system services / 3.8 in Kit Kat

■  Memory and Process Management

■  Network Stack

■  Driver Model

■  Security

❑  Providing an abstraction layer between the H/W and the rest of the S/W stack

Android Anatomy
 80!

The Application/Activity!
Lifecycle!

Android Anatomy
 81!

The Application/Activity Life Cycle

❑  Android is designed around the unique requirements of mobile

applications.

■  In particular, Android recognizes that resources (memory and battery, for example) are

limited on most mobile devices, and provides mechanisms to conserve those
resources.

❑  The mechanisms are evident in the Android Activity Lifecycle,
which defines the states or events that an activity goes through
from the time it is created until it finishes running.

Android Anatomy
 82!

The Activity Life Cycle

❑ onStop() and
onDestroy() are
optional and may never
be called

❑ If you need persistence,
the save needs to
happen in onPause()

Android Anatomy
 83!

The Activity Life Cycle

❑  An activity monitors and reacts to these events by instantiating methods that

override the Activity class methods for each event:

❑ onCreate

■  Called when an activity is first created. This is the place you normally create
your views, open any persistent data files your activity needs to use, and in
general initialize your activity.

■  When calling onCreate(), the Android framework is passed a Bundle object
that contains any activity state saved from when the activity ran before.

❑ onStart

■  Called just before an activity becomes visible on the screen. Once onStart()

completes, if your activity can become the foreground activity on the screen,
control will transfer to onResume().

■  If the activity cannot become the foreground activity for some reason, control
transfers to the onStop() method.

Android Anatomy
 84!

The Activity Life Cycle

❑ onResume

■  Called right after onStart() if your activity is the foreground activity on the
screen. At this point your activity is running and interacting with the user.
You are receiving keyboard and touch inputs, and the screen is
displaying your user interface.

■  onResume() is also called if your activity loses the foreground to another
activity, and that activity eventually exits, popping your activity back to
the foreground. This is where your activity would start (or resume) doing
things that are needed to update the user interface.

Android Anatomy
 85!

The Activity Life Cycle

❑ onPause

■  Called when Android is just about to resume a different
activity, giving that activity the foreground. At this point your
activity will no longer have access to the screen, so you
should stop doing things that consume battery and CPU
cycles unnecessarily.

⬥  If you are running an animation, no one is going to be able to see it, so you might as well

suspend it until you get the screen back. Your activity needs to take advantage of this
method to store any state that you will need in case your activity gains the foreground
again—and it is not guaranteed that your activity will resume.

■  Once you exit this method, Android may kill your activity at
any time without returning control to you.

Android Anatomy
 86!

The Activity Life Cycle

❑  onStop

■  Called when your activity is no longer visible, either because another
activity has taken the foreground or because your activity is being
destroyed.

❑  onDestroy

■  The last chance for your activity to do any processing before it is

destroyed. Normally you'd get to this point because the activity is
done and the framework called its finish method. But as mentioned
earlier, the method might be called because Android has decided it
needs the resources your activity is consuming.

Android Anatomy
 87!

Questions?!

Android Anatomy
 88!

