Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

Android Google Services
Part 2

Location & Geocoding

Google Services - Part 2 2

Google Services Overview

J Overview of Google Play Services and Setup
 Detailed look at
- Google+ Sign-in and Authentication (Part 1)
- Location & Geocoding (Part 2)
. Google Maps (Part 3)

Google Services Overview

J Detalled look at

. Location & Geocoding (Part 2)

Google Services - Part 2 4

Agenda * for

 Finding your Location with Location-Based Services (LBS) &
Fused Location Provider

1 Overview of GeoFencing & Activitly Recognition

J Installation & Registration of Google Maps API| ‘Key’

 Creating interactive Maps with GoogleMaps,
SupportMapFragments & FragmentActivitiys
 Creating & Adding Markers to Maps

1 One of the defining features of mobile phones is their portability,
SO It’s not surprising that some of the most enticing Android
features are the services that let you find, contextualize, and

map physical locations
- Using Location-Based Services / Fused Location Provider

¢ You can find the device’s current location (GPS, Network Provider etc.)

¢ send notifications when the device’s location is ‘near’ some other location, (via proximity alerts or
GeoFencing)

- Using Google Maps (Part 3) you can

¢ create map-based Activities as a Ul element with full access, allowing you to zoom in/out/pan, control
display settings etc.

¢ using Markers, you can annotate the map and handle touch/tap events

Introduction

Overview of Location-Based Services

J Location-based services use real-time location data from a
mobile device or smartphone to provide information,
entertainment, or security.

J Location-Based services are available on most smartphones,
and a majority of smartphone owners use location-based
services.

J Many popular applications integrate location-based services.
Examples include

- Google Maps, TripAdvisor, Starbucks, The Weather
Channel, Navigation, Facebook Places, CoffeeMate ©

Overview of Location Providers

Jd GPS is accurate, but
- It only works outdoors
- It quickly consumes battery power
- It doesn't return the location quickly

J Android’s Network (Fused) Location Provider determines user
location using Cell Towers and Wi-Fi signals. It is less
accurate than GPS, but

- It works indoors and outdoors
- It responds faster
- and it uses less battery power

The Fused Location Provider

 The location APls in Google Play services contains a
fused location provider

- The fused location provider manages the underlying
location technology and provides a simple API that

- allows you to specify requirements at a high level, like
high accuracy or low power

- optimizes the device’s use of battery power

 The goal of Fused Location Provider (‘Fused’) is to lessen the
workload of developers who want to interact with location

iInformation
 Provides a single programmable interface

1 Google does the hard work in sourcing location, simply
feeding it to developers’ applications (via Google Play
Services)

- Fused brings together cellular, WiFi, GPS, and Sensor data

Fused Location Provider

Fused Location Provider

Apps

Google
Play
Services
Platform

2 ‘
Sensor HAL GPS HAL WPA Supp/cfg80211 RIL

Before Android 4.2
d Simplified AP
- 3 main aspects were worked on
¢ Speed
¢ Accuracy
¢ Coverge

Google Services - Part 2

=

J A user can define one of the 3 main fused location provider modes by
setting priority:
= HIGH_ACCURACY, BALANCED_POWER or NO_POWER

 During a Google IO presentation a chart was presented showing effect
of different priorities of the recognition algorithm as tested multiple times
on a Galaxy Nexus.

Fused Location Provider & Priority Modes

Priority Typical Interval Battery Drain gAccuracy*

per Hour (%)

HIGH_ACCURACY 5 seconds 7.25% ~10 meters

BALANCED POWER 20 seconds 0.6% ~40 meters

NO_POWER N/A small ~1 mile?

Challenges in Determining User Location i
J Multitude of location sources

GPS, Cell-ID, and Wi-Fi can each provide a clue to users location.
Determining which to use and trust is a matter of trade-offs in accuracy,
speed, and battery-efficiency.

1 User Movement

Because the user location changes, you must account for movement by
re-estimating user location every so often.

J Varying Accuracy
Location estimates from each location source are not consistent in their
accuracy. A location obtained 10 seconds ago from one source might
be more accurate than the newest location from another or same

SOource.

Part 2
Location & Geocoding

Making Your App Location-Aware

https://developer.android.com/training/location/index.html

1 One of the unigue features of mobile applications is location
awareness. Mobile users take their devices with them
everywhere, and adding location awareness to your app offers
users a more contextual experience.

J The location APls available in Google Play Services facilitate
adding location awareness to your app with automated
location tracking, geofencing, and activity recognition.

Overview

Overview - Location-Based Services in Android

J Android provides two location frameworks
- In package android.location
- In package com.google.android.gms.location
(part of Google Play Services)

J The framework provided by Google Play Services is now the preferred
way to add location-based services to an application.

- simpler APl — greater accuracy
- more power efficient — more versatile

Note that some classes in package android.location
are still used by the Google Play Services API.

| ocation Awareness - Your “Need to Know”

1. Getting the Last Known Location

how to retrieve the last known location of an Android device, which is usually
equivalent to the user's current location.

2. Changing Location Settings
how to detect and apply system settings for location features.

3. Receiving Location Updates
how to request and receive periodic location updates.

4. Displaying a Location Address
how to convert a location's latitude and longitude into an address (reverse geocoding).

5. Creating and Monitoring Geofences

how to define one or more geographic areas as locations of interest, called geofences,
and detect when the user is close to or inside a geofence.

J Using the Google Play services location APIs, your app can request the
last known location of the user's device.

J In most cases, you are interested in the user's current location, which is
usually equivalent to the last known location of the device.

 Specifically, use the fused location provider to retrieve the device's last
known location. The Steps involved are :

- Setup Google Play Services (should be done already...)
- Specify App Permissions

- Connect to Google Play Services

- Get the Users Last Known Location

1. Getting the Last Know Location

1. Getting the Last Know Location ‘
Specify App Permissions

Apps that use location services must request location permissions. Android offers two location permissions: ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION. The permission you choose determines the accuracy of the location returned by the API. If you specify
ACCESS_COARSE_LOCATION, the API returns a location with an accuracy approximately equivalent to a city block.

This lesson requires only coarse location. Request this permission with the uses-permission element in your app manifest, as the following code

snippet shows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.google.android.gms.location.sample.basiclocationsample” >

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
</manifest>

Google Services - Part 2 19

1. Getting the Last Know Location * ‘

Connect to Google Play Services

To connect to the API, you need to create an instance of the Google Play services API client. For details about using the client, see the guide to

Accessing Google APls.

In your activity's onCreate() method, create an instance of Google API Client, using the GoogleApiClient.Builder class to add the LocationServices

API, as the following code snippet shows.

// Create an instance of GoogleAPIClient.
if (mGoogleApiClient == null) {
mGoogleApiClient = new GoogleApiClient.Builder(this)
.addConnectionCallbacks(this)

M’)
.addApi(LocationServices.API)

T build();

Google Services - Part 2 2(0)

1. Getting the Last Know Location ‘

Connect to Google Play Services

To connect, call connect() from the activity's onStart() method. To disconnect, call disconnect() from the activity's onStop() method. The following
snippet shows an example of how to use both of these methods.

protected void onStart() {
mGoogleApiClient.connect();
super.onStart();

}

protected void onStop() {
mGoogleApiClient.disconnect();
super.onStop();

Google Services - Part 2 21

1. Getting the Last Know Location *

To request the last known location, call the getLastLocation() method, passing it your instance of the GoogleApiClient object. Do this in the
onConnected() callback provided by Google API Client, which is called when the client is ready. The following code snippet illustrates the request and a

simple handling of the response:

public class MainActivity extends ActionBarActivity implements
ConnectionCallbacks, OnConnectionFailedListener {

@Override
public void onConnected(Bundle connectionHint) {
[mLastLocation = LocationServices.FusedLocationApi.getLastLocation(]
mGoogleApiClient);
if (mLastLocation != null) {
mLatitudeText.setText(String.valueOf(mLastLocation.getLatitude()));
mLongitudeText.setText(String.valueOf(mLastLocation.getLongitude()));

The getLastLocation() method returns a Location object from which you can retrieve the latitude and longitude coordinates of a geographic location.

The location object returned may be null in rare cases when the location is not available.

Google Services - Part 2 22

2. Changing Location Settings

Set Up a Location Request

Create the location request and set the parameters as shown in this code sample:

protected void createlLocationRequest() {
LocationRequest mLocationRequest = new LocationRequest();
mLocationRequest.setInterval(10000);
mLocationRequest.setFastestInterval(5000);
mLocationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

The priority of PRIORITY_HIGH_ACCURACY, combined with the ACCESS_FINE_LOCATION permission setting that you've defined in the app manifest, and a

fast update interval of 5000 milliseconds (5 seconds), causes the fused location provider to return location updates that are accurate to within a few

feet. This approach is appropriate for mapping apps that display the location in real time.

Performance hint: If your app accesses the network or does other long-running work after receiving a location update, adjust the fastest interval to a

slower value. This adjustment prevents your app from receiving updates it can't use. Once the long-running work is done, set the fastest interval

back to a fast value.

Google Services - Part 2 23

2. Changing Location Settings ‘

Get Current Location Settings

Once you have connected to Google Play services and the location services API, you can get the current location settings of a user's device. To do this,
create a LocationSettingsRequest.Builder, and add one or more location requests. The following code snippet shows how to add the location request
that was created in the previous step:

LocationSettingsRequest.Builder builder = new LocationSettingsRequest.Builder()
.addLocationRequest(mLocationRequest);

Next check whether the current location settings are satisfied:

PendingResult<LocationSettingsResult> result =
LocationServices.SettingsApi.checkLocationSettings(mGoogleClient,
builder.build());

When the PendingResult returns, your app can check the location settings by looking at the status code from the LocationSettingsResult object. To

get even more details about the the current state of the relevant location settings, your app can call the LocationSettingsResult object's

getLocationSettingsStates() method.

Google Services - Part 2 24

3. Recelving Location Updates

J If your app can continuously track location, it can deliver more
relevant information to the user.

For example, if your app helps the user find their way while walking or
driving, or if your app tracks the location of assets, it needs to get the
location of the device at regular intervals. As well as the geographical

location (latitude and longitude), you may want to give the user further
information such as the bearing (horizontal direction of travel), altitude,
or velocity of the device.

This information, and more, is available in the Location object that your
app can retrieve from the fused location provider.

3. Receliving Location Updates ‘

Request Location Updates

Before requesting location updates, your app must connect to location services and make a location request. The lesson on Changing Location Settings
shows you how to do this. Once a location request is in place you can start the regular updates by calling requestLocationUpdates(). Do this in the

onConnected() callback provided by Google API Client, which is called when the client is ready.

Depending on the form of the request, the fused location provider either invokes the LocationListener.onLocationChanged() callback method and
passes it a Location object, or issues a PendingIntent that contains the location in its extended data. The accuracy and frequency of the updates are

affected by the location permissions you've requested and the options you set in the location request object.

This lesson shows you how to get the update using the LocationListener callback approach. Call requestLocationUpdates(), passing it your instance
of the GoogleApiClient, the LocationRequest object, and a LocationListener. Define a startLocationUpdates() method, called from the

onConnected() callback, as shown in the following code sample:

Google Services - Part 2 26

3. Receiving Location Updates *

Request Location Updates

@Override
public void onConnected(Bundle connectionHint) {

if (mRequestinglLocationUpdates) {
startLocationUpdates();
}
}

protected void startLocationUpdates() {
LocationServices.FusedLocationApi.requestLocationUpdates(
mGoogleApiClient, mLocationRequest, this);

}

Google Services - Part 2 27

=

3. Receiving Location Updates *
Define the Location Update Callback

The fused location provider invokes the LocationListener.onLocationChanged() callback method. The incoming argument is a Location object
containing the location's latitude and longitude. The following snippet shows how to implement the LocationListener interface and define the method,

then get the timestamp of the location update and display the latitude, longitude and timestamp on your app's user interface:

public class MainActivity extends ActionBarActivity implements
ConnectionCallbacks, OnConnectionFailedListener, LocationListener {

fr'@0verride)
public void onLocationChanged(Location location) {
mCurrentLocation = location;
mLastUpdateTime = DateFormat.getTimeInstance().format(new Date());
updateUI();

\J J

private void updateUI() {
mLatitudeTextView.setText(String.valueOf(mCurrentLocation.getLatitude()));
mLongitudeTextView.setText(String.valueOf(mCurrentLocation.getLongitude()));
mLastUpdateTimeTextView.setText(mLastUpdateTime);

Google Services - Part 2 28

3. Receiving Location Updates * ‘
Stop Location Updates

Consider whether you want to stop the location updates when the activity is no longer in focus, such as when the user switches to another app orto a
different activity in the same app. This can be handy to reduce power consumption, provided the app doesn't need to collect information even when it's

running in the background. This section shows how you can stop the updates in the activity's onPause () method.

To stop location updates, call removeLocationUpdates(), passing it your instance of the GoogleApiClient object and a LocationListener, as shownin

the following code sample:

@Override

protected void onPause() {
super.onPause();
stopLocationUpdates();

}

protected void stopLocationUpdates() {
LocationServices.FusedLocationApi.removeLocationUpdates(
mGoogleApiClient, this);

Google Services - Part 2 29

3. Receliving Location Updates ‘

Stop Location Updates

Use a boolean, mRequestinglLocationUpdates, to track whether location updates are currently turned on. In the activity's onResume () method, check

whether location updates are currently active, and activate them if not:

@Override
public void onResume() {
super.onResume();
if (mGoogleApiClient.isConnected() && !mRequestinglLocationUpdates) {
startLocationUpdates();

}

Google Services - Part 2 30

3. Receliving Location Updates
Save the State of the Activity

A change to the device's configuration, such as a change in screen orientation or language, can cause the current activity to be destroyed. Your app

must therefore store any information it needs to recreate the activity. One way to do this is via an instance state stored in a Bundle object.

The following code sample shows how to use the activity's onSaveInstanceState() callback to save the instance state:

public void onSavelnstanceState(Bundle savedInstanceState) {
savedInstanceState.putBoolean(REQUESTING LOCATION_UPDATES_ KEY,
mRequestinglLocationUpdates);
savedInstanceState.putParcelable(LOCATION _KEY, mCurrentLocation);
savedInstanceState.putString(LAST _UPDATED TIME_STRING_KEY, mLastUpdateTime);
super.onSaveInstanceState(savedInstanceState);

Define an updatevaluesFromBundle() method to restore the saved values from the previous instance of the activity, if they're available. Call the method

from the activity's onCreate() method, as shown in the following code sample:

Google Services - Part 2 31

3. Receliving Location Updates

@Override
public void onCreate(Bundle savedInstanceState) {

updateValuesFromBundle(savedInstanceState);

private void updateValuesFromBundle(Bundle savedInstanceState) {
if (savedInstanceState != null) {

// Update the value of mRequestinglLocationUpdates from the Bundle, and

// make sure that the Start Updates and Stop Updates buttons are

// correctly enabled or disabled.

if (savedInstanceState.keySet().contains(REQUESTING_LOCATION_UPDATES_KEY)) {
mRequestinglLocationUpdates = savedInstanceState.getBoolean(

REQUESTING_LOCATION_UPDATES_KEY);

setButtonsEnabledState();

// Update the value of mCurrentLocation from the Bundle and update the
// UL to show the correct latitude and longitude.
if (savedInstanceState.keySet().contains(LOCATION_KEY)) {
// Since LOCATION_KEY was found in the Bundle, we can be sure that
// mCurrentLocationis not null.
mCurrentLocation = savedInstanceState.getParcelable(LOCATION_KEY);

// Update the value of mLastUpdateTime from the Bundle and update the UI.
if (savedInstanceState.keySet().contains(LAST_UPDATED_TIME_STRING_KEY)) {
mLastUpdateTime = savedInstanceState.getString(
LAST_UPDATED_TIME_STRING_KEY);

}
updateUI();

Google Services - Part 2 32

4., Displaying a Location Address for

1 Getting the Last Known Location and Receiving Location
Updates describe how to get the user's location in the form
of a Location object that contains latitude and longitude

coordinates.

d Although latitude and longitude are useful for calculating
distance or displaying a map position, in many cases the
address of the location is more useful.

- For example, if you want to let your users know where they are or
what is close by, a street address is more meaningful than the
geographic coordinates (latitude/longitude) of the location.

d Using the Geocoder class in the Android framework location
APIs, you can convert an address to the corresponding
geographic coordinates. This process is called geocoding.
Alternatively, you can convert a geographic location to an
address. The address lookup feature is also known as
reverse geocoding.

J The getFromlLocation() method to convert a geographic
location to an address. The method returns an estimated

street address corresponding to a given latitude and
longitude.

4., Displaying a Location Address

4., Displaying a Location Address

J The steps necessary are as follows:
= Get a Geographic Location

= Define an Intent Service to Fetch the Address
o Define the Intent Service in your App Manifest
o Create a Geocoder
o Retrieve the street address data
o Return the address to the requestor

= Start the Intent Service
= Receive the Geocoding Results

J For a Full discussion (and examples) visit
https://developer.android.com/training/location/display-address.html

~xample: Translating a Location to an Address =

(Reverse Geocoding)

private String getAddressFromLatLng(LatLng latLng) {
Geocoder geocoder = new Geocoder(this);
String strAddress = "";
Address address;
try {
address = geocoder
.getFromLocation(latLng.latitude, latlLng.longitude, 1)
.get(0);
strAddress = address.getAddressLine(0) +
" " + address.getAddressLine(1) +
" " +address.getAddressLine(2);

}
catch (IOException e) {

}

return strAddress;

—xample: Translating a Location to an Address

(Reverse Geocoding)

@ @® Genymotion for personal use - Google Nexus 5 - 6.0.0 (1080x1920, 480...

QWi mi1252
waterford Search @

Map Satellite
Plunkett [Z]

Clover
Meadows

Y5 S oy rmount A
3 St - = ;
000/79// \ == R711 1\ . r
S | X &
73 | / J)‘\\\H‘\ v

<
&

& 2

&
S & /
a &
4y G588 $ /
N]

Oz,
6/7.9
ms
t
Lower Yeljow Rd

Rd

52.25162619369728 /
-7.10650909692049Address : 37 John's
Hill Waterford Ireland

o ’
Newtodin [ower + GO gIe Rconan

=
Map data ©2016 Google = Terms of Use Report a map error

Translating an Address to a Location Geocoding)

 Create a string with the address

String addressStr =
"171 Moultrie Street, Charleston, SC, 29409";

J Create a Geocoder instance

Geocoder geocoder = new Geocoder(this);

J Call the Geocoder method getFromLocationName()

List<Address> addresses =
geocoder.getFromLocationName(addressStr, 1);

 Retrieve the latitude and longitude from the first address

Address address = addresses.get(9);
// call address.getlLatitude() and
// address.getlLongitude() as needed

—xample:

o -
e

Geocoding

B 12:20

Last Location

Latitude: 32.828828828828826

Longitude: -80.00203576579963

Address: 171 Moultrie St
Charleston, SC 29409

USA

5. Creating and Monitoring Geofences o
J Geofencing combines awareness of the user's current
location with awareness of the user's proximity to locations

that may be of interest.

J To mark a location of interest, you specify its latitude and
longitude. To adjust the proximity for the location, you add a
radius. The latitude, longitude, and radius define a geofence,
creating a circular area, or fence, around the location of
interest.

5. Creating and Monitoring Geofences %
J You can have multiple active geotences, with a limit of 100

per device user.

- For each geofence, you can ask Location Services to send
you entrance and exit events, or you can specify a duration
within the geofence area to wait, or dwell, before triggering an
event.

d You can limit the duration of any geofence by specifying an
expiration duration in milliseconds. After the geofence expires,
Location Services automatically removes it.

5. Creating and Monitoring Geofences

J Entrance
J Dwell ’\
J Exit events

Google Services - Part 2 42

5. Creating and Monitoring Geofences

J The steps necessary are as follows:
= Set up for Geofence Monitoring

= Create and Add Geofences
o Create geofence objects
o Specify geofences and initial triggers
o Define an Intent for geofence transitions
o Add geofences

« Handle Geofence Transitions
= Stop Geofence Monitoring

J For a Full discussion (and examples) visit
https://developer.android.com/training/location/geofencing.html

Testing Google Play Services £

To test an application using the Google Play services SDK,
you must use either

J A compatible Android device that runs Android 2.3 or
higher and includes Google Play Store

J An Android emulator (virtual device) that runs the Google
APls platform based on Android 4.2.2 or higher
(Genymotion is a good one to use and Android Studio
has improved quite a lot in the last few releases — next
few slides)

Aside : Android Studio

—mulator Setup

A

2 O

\.\

®© &

Location

ingerprint

GPS data point

Coordinate system

Currently reported location

Longitude: -7.1400
Latitude: 52.2500
Altitude: 0.0

GPS data playback

Delay (sec)

Decimal

Latitude Longitude

Speed 1X

Longitude

-7.14

Latitude

52.25

Altitude (meters)

0.0

SEND

Elevation Description

LOAD GPXYKML

Android Emulator - Nexus_5_API_23:5554

Carriganard ¢

Waterford
o g'eark

Aside : Genymotion Emulator Setup

o0 Mapping service - B u ©© Genymotion - Galaxy S4 w... — & n

Genymotion

-
Walsh
+ Park GAA

Waterford
Health Park

Latitude

Longitude

Colaiste Na
Maighdne

Altitude

L mOf

roal

Calor Gas) Accuracy
Depot -

o]

Bearing
St. Paul’s
Sports Ground

0.0

St Paul's
School

Travelodge
Watarfard
Map data ©2013 Goo

—xample: Using LocationListener *

o @ Genymotion for personal use - Google Nexus 5 - 6.0.0 (1080x1920, 480... |

L] QW E 1056

waterford

Donation.5.0

Ma Satellite
P Plunkett [Z]

\

O ’,
00/7,76// R680

Se

‘9/} S

C,
8076'
U'?O’ R686

® i —
[Re61]] [fmount
f
®

Ijlﬂ] L“\»_';/J
Watej

RAED

Lower Yejjow Rd

52.262607992443144 /
-1.117222510278225

Newtown [owe' [R683 +

z
Map data ©2016 Google = Terms of Use Report a map error

—xample: Using LocationListener (continued)

o @ Genymotion for personal use - Google Nexus 5 - 6.0.0 (1080x1920, 480... |
L Q¥4 m056

waterford
¢ Donation.5.0 ©

Ma Satellite
P Plunkett [Z]

9y
Yo o, wu [rmount
CD/;,,@// R680 &

St

&
Cery; o
e 3
U@d R686)@oﬁ‘
R686 R861

Lower Yejjow Rd

52.25328133360846 /
-7.12304525077343

Newtown [owe' [R683 +

z
Map data ©2016 Google ~Terms of Use Report a map error

Key Location Classes and Interfaces

In package android.location

J Class Location

= represents a geographic location sensed at a
particular time

1 Class Address

. represents an address as a set of strings describing a
location.

J Class Geocoder
. translates between |locations and addresses

Key Location Classes and Interfaces (continued)

In package com.google.android.gms.location
 Class LocationServices
main entry point for location services integration
4 Interface FusedLocationProviderApi
main entry point for interacting with the fused location provider
d Interface LocationListener
receives notifications when the location has changed

 Class LocationRequest

- contains quality-of-service parameters for requests to the
FusedLocationProviderApi

| ocation Services on an Emulator

A virtual device (emulator) does not have GPS or real
location providers, so it uses a “mock” GPS provider
that always returns the same position unless it is
changed manually. (Like we can using Genymotion)

d If you’re not using Genymotion/Android Studio, the
location on the emulator can be changed using

. the Android Device Monitor

- the “geo” command in the emulator console; e.g.,
geo fix -79.960138 32.797917

Using the Android Device Monitor o

Run Tools VCS Window Help

nation.5 . ETCR A ®e)] (=) &)

® S

Save File as Template...
Generate JavaDoc...

o8N e (C) Donation.java X | © activity_map.xml

CLuri|{ caccily J,

New Scratch File...
IDE Scripting Console

ar nci Ug

options.

sl bl Create Command-line Launcher... er());

getMap ()
® Groovy Console...

Toast.ma Android +"4 Navigation Editor
betAddressFromLatLng(latLng), Toast.LE Sync Project with Gradle Files
Android Device Monitor

AVD Manager

rride SDK Manager
ic void onMapLongClick(LatLng latLng) { v Enable ADB Integration

) Theme Editor

Google Services - Part 2

Using the Android Device Monitor

00 ~ Android Device Monitor

il Ky
Devices &2] =8|y Threadsl Heapl Allocation Tracker I"‘ Network Stlistics llﬁl File Explorer 3]Ofmulator CDntroII [system lnforrnation’ ke =+ V=08
& 0 '2,;,’ g o) @ . W ¥ |Name Size Date Tin‘ Permissions Info)
Name » (=acct 2016-04-07 17:03 drwxr-xr-x
v E genymotio... Online 6.0, debug » (= cache 2016-03-21 04:22 drwxrwx---
com.andro... 312... 8600 || charger 1969-12-31 19:00 Irwxrwxrwx -> [sbin/h...

com.andro... 259... 8601 » (= config 2016-04-07 17:03 dr-x------
com.googl... 614 8602 =d 2016-04-07 17:03 Irwxrwxrwx -> [sys/ke...
8603 » (= data 2016-03-27 17:59 drwxrwx--x

com.googl... 317...

I o | BB 8604 |- default.prop 547 1969-12-31 19:00 -rw-r--r--
com.andro... 259... 8605 » (=dev 2016-04-07 17:03 drwxr-xr-x P
com.andro... [151... 8606 =etc 2016-04-07 17:03 Irwxrwxrwx -> [syste... a n e |
com.googl... 315... 8607 | file_contexts 13954 1969-12-31 19:00 -rw-r--r--
com.andro... |315... 8608 || fstab.vbox86 396 1969-12-31 19:00 -rw-r-----
com.googl... 315... 8609 - init 1387... 1969-12-31 19:00 -rwxr-x---
com.andro... |565 8610 init.environ.rc 852 1969-12-31 19:00 -rwxr-x---
android.pr... 152.. 8611 init.rc 25699 1969-12-31 19:00 -rwxr-x---
com.googl... 315... 8612 | inittrace.rc 1921 1969-12-31 19:00 -rwxr-x---
ie.app 108... 8613 @ init.usb.rc 3885 1969-12-31 19:00 -rwxr-x---
com.andro... |316... 8614 | init.vbox86.rc 2086 1969-12-31 19:00 -rwxr-x---
com.googl... 316... 8615 @ init.vbox86p.rc 256 1969-12-31 19:00 -rwxr-x---
com.andro... |315... 8616 @ init.zygote32.rc 301 1969-12-31 19:00 -rwxr-x---
system_pr... 310.. 8617 » (= mnt 2016-04-07 17:03 drwxr-xr-x
» (= oem 1969-12-31 19:00 drwxr-xr-x
» (= proc 2016-04-07 17:03 dr-xr-xr-x
|| property_contexts 3201 1969-12-31 19:00 -rw-r--r--
|| rom.trace 0 1969-12-31
» (= root 2015-11-02
» (= sbin 2016-04-07 17:03 drwxr-x---
(= sdcard 2016-04-07 17:03 Irwxrwxrwx -> [storag...
@ seapp_contexts 596 1969-12-31 19:00 -rw-r--r--
B callaiie ccmcataa A AnAA AN AA AanAA o o o
D Logcat | &l console X kbl #B-r5v= 08
OpenGL Trace View

| | s1Mofasam |

Google Services - Part 2

Using the Android Device Monitor

180 ¥, bo B antinnc titlal natAddracckraml atlnnl latlna 1)=
[XK J Android Device Monitor
: \[ﬁ @oovs| B E - Q-
ﬂ Devices &3] = B Threads| Heap | Allocation Tracker | %" Network Statistics |lﬁl File Expldfer [o Emulator Control 28 l System Information| = a
ﬂ a @l O 2’;’, ‘é?, o] Eail . Yy v Telephony Status —

Name X =~ ~
[= genymotio.. oninel | Jo0debug] ——|IERCIS S 3

com.andro... 312... 8600 Data: & Latency: s

com.andro... 259... 8601

com.googl... 614 8602 Telephony Actions

com.googl... 317... 8603

com.andro... 315... 8604 Incoming number:

com.andro... 259... 8605 D \sien

com.andro... 151... 8606 .

com.googl... 315... 8607 SMS

com.andro... 315... 8608 Message:

com.googl... 315... 8609

com.andro... 555 8610

android.pr... 152... 8611

com.googl... 315... 8612

ie.app 108... 8613 cel A Uz

com.andro... 316... 8614

com.googl... 316... 8615 Location Controls

com.andro... 315... 8616

system_pr... 310... 8617 GPX KML_J

) Decimal
Sexagesimal

Longitude 22.08

Latitude 57 40

. Send

g #B-03-= 0

&0 LogCat | & console 2
OpenGL Trace View

TeT

| 100Mof492m |

Google Services - Part 2

Emulator Control
Panel

Using the

—“mulator Control Panel

- The Emulator Control panel can send simulated location data in three
different ways:

- Manually send individual longitude/latitude coordinates to the device.
- Use a GPXTi
- Use a KML fi

playbac
Jd See the fo
- GPX: T

e describing a route for playback to the device.
e describing individual place marks for sequenced

K 10 t

Ne device.

lowing for details of GPX and KML files:

ne GPS Exchange Format
nttp://www.topografix.com/gpx.asp

KML Tutorial
Nttp://code.google.com/apis/kml/documentation/kml_tut.html

Setting a Mock Location on an Emulator

1A nntinnc titlal natAddracckraml atlinnl latlna))«
[JOX) Android Device Monitor
@ | [it v Ko Qv
Q Devices &] = 8 '%_, Threads| Heap | Allocation Tracker | % Network Statistics |lﬁl File Expldfer [o Emulator Control &3 l System Information| = B8
OO Y O @MY T Telephonstatus —
Name X =~ ~
[= genymotio.. oninel | Jo0debug] ——|IERCIS S 3
com.andro... 312... 8600 Data: & Latency: s
com.andro... 259... 8601
com.googl... 614 8602 Telephony Actions
com.googl... 317... 8603
com.andro... 315... 8604 Incoming number:
com.andro... 259... 8605 D \sien
com.andro... 151... 8606 a' Ie
com.googl... 315... 8607 Sit
com.andro... 315... 8608 Message:
com.googl... 315... 8609
com.andro... 555 8610
android.pr... 152... 8611
com.googl... 315... 8612
ie.app 108... 8613 cel A Uz
com.andro... 316... 8614
com.googl... 316... 8615 Location Controls
com.andro... 315... 8616 GPX | KML
system_pr... 310... 8617)
(+) Decimal
Sexagesimal
Longitude 22.08
Latitude]
. Send

g #B-03-= 0

&0 LogCat | & console 2
OpenGL Trace View

TeT

| 100Mof492m |

Google Services - Part 2

Setting a Mock Location Using the “geo” Command for
To send mock location data from the command line:

J In Android Studio, click on the “Terminal” tab [& Terminal]
near the bottom.

- Connect to the emulator console:
telnet localhost 5554
J Send the location data:
geo fix -121.45356 46.51119 4392

The “geo fix” command accepts a longitude and latitude
in decimal degrees, and an optional altitude in meters.

5554 is the console port
(check emulator screen)

Note that a telnet client is not installed automatically in Windows. Use
Control Panel = Programs and Features = Turn Windows features on or off

Activity Recognition for

J Makes it easy to check the user’s current activity
- still, walking, cycling, and in-vehicle, with very efficient use of
the battery.

Detect the user's activity using sensor data

Vehicle On Foot Still On Bicycle

- Sensor data to find the type of action the user is performing

All Available via Google Play Services

Device Google Play services

Google Play
services library

Your app

\

———————— — — — — — - ————— — — ——— —

——————————————————————— -

Figure 1: An illustration showing how the Google API Client provides an interface for connecting and making calls to any
of the available Google Play services such as Google Play Games and Google Drive.

Google Services - Part 2 59

CoffeeMate 6.0

Code
Highlights

MapskFragment — interfaces/instance variables *

public class MapsFragment extends MapFragment implements

J Here we declare the

a Goo . . I .

gleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener, |nterfaCeS our CUStOm
GoogleMap.OnInfoWindowClickListener, Ma p Fra gme nt
GoogleMap.OnMapLongClickListener, .

GoogleMap. OnMapClickListener, (MapsFragment) implements.
GoogleMap.OnMarkerClickListener,
| eady d Interfaces for Volley &
= LocationListener, .
| VolleyListener {) Location Updates.
ﬁrivate GoogleApiClient mGoogleApiClient; \ J Variables to keep track of the
private Location mCurrentlLocation; ,
private LocationRequest mLocationRequest; users current |OCat|Oﬂ,
private List<Coffee> mCoffeelist; :
private long UPDATE_INTERVAL = 30000; /* 30 secs %/ location requests etc.
private long FASTEST_INTERVAL = 1000; /x 5 secs */
private GoogleMap mMap;

wivate float zoom = 13f: J

MapsFragment — GoogleApiClient Setup *

@Override .
public void onViewCreated(View view, Bundle savedInstanceState) { D Here we bUlld our
super.onViewCreated(view, savedInstanceState); . .
GoogleApiClient

TextView titleBar = (TextView) getActivity().findViewById(R.id.recentAc SpeCIfylng the

titleBar.setText("Coffee Map"); LocatlonSer\nceS AP' .

Home.app.mGoogleApiClient = new GoogleApiClient.Builder(getActivity()) y .
.addConnectionCallbacks(this) D H: S CommOﬂ praCthe tO
.addOnConnectionFailedListener(this)

(-209kpi{LocationServices. APT) } ‘rebuild’ your api client (can
- ~ actually improve

performance)

setHasOptionsMenu(true);

MapsFragment — onStart() / onStop() =

O blic vold onStart() ¢ A Here we try and ‘connect’ to
(AN ° °

Home.app.mGoogléApiClient.connect(); Our GOOgIEAp]'Cllent aﬂd
CoffeeApi.attachListener(this); ‘attach’ the Fragment.

}

| 1 Disconnect when the
@Override .
public void onStop() { Fragment is stopped.

super.onStop();

if (Home.app.mGoogleApiClient '= null && Home.app.mGoogleApiClient.isConnected())
Home.app.mGoogleApiClient.disconnect();

CoffeeApi.detachListener(); .
} And detach the listener

Google Services — Part 2 63

=

MapsFragment — onConnected() *

@Override '
public void onConnected(Bundle dataBundle) { D ACC]UIre GoogleMap
getMapAsync (this): (automatically initializes the maps system
77—Dtsptay—tire—comection status and the V|eW)
try {
mCurrentLocation = LocationServices I
o atiots 1 Get Current Location
.getLastLocation(Home.app.mGoogleApiClient); . .
) , _ 1 Set Location if necessary
catch(SecurityException se)
{ (e.g. on emulator)
Toast.makeText(getActivity(),"Check Your Permissions",Toast.LENGTH_SHORT).show();
}
//'if (mCurrentLocation != null) { ‘\\
Toast.makeText(getActivity(), "GPS location was found!", Toast.LENGTH_SHORT).show();
//LatlLng latLng = new LatLng(mCurrentLocation.getlLatitude(), mCurrentLocation.getLongitude());
} else {
Toast.makeText(getActivity(), "Current location was null, Setting Default Values!", Toast.LENGTH_SHORT).show();
mCurrentLocation = new Location("Waterford City Default (WIT)");
mCurrentLocation.setlatitude(52.2462);
\\‘ mCurrentLocation.setlLongitude(-7.1202); A//
}

Google Services — Part 2 64

MapsFragment — onMapReady() *

@Override
public void onMapReady(GoogleMap googleMap) {
[mMap = googleMap;

if (TcheckPermission())
requestPermission();

else

L mMap.setMyLocationEnabled(true); Y

/‘mMap.getUiSettings().setMapToolbarEnabled(true);)
mMap.getUiSettings().setCompassEnabled(true);
mMap.getUiSettings().setMyLocationButtonEnabled(true);
mMap.getUiSettings().setAllGesturesEnabled(true);
mMap.setTrafficEnabled(true);
mMap.setBuildingsEnabled(true);

_MMap. getUiSettings().setZoomControlsEnabled(true);

-
initListeners();]
initCamera(mCurrentlLocation):

startLocationUpdates();
CoffeeApi.attachListener(this);
CoffeeApi.getAll("/coffees/" + Home.app.googleToken, null);

]

- Bind to our GoogleMap and
set its initial type.

J Check for the necessary
Permissions.

d Set the Map (mMap) properties
1 Initialise Listeners & Camera

1 Start Location Updates (next
slide) & get all the users
coffees.

o

MapsFragment — Permissions *

//http //www. journaldev.com/10409/android-handling-runtime-permissions—example

n _checkPermission() {

int result = ContextCompat.checkSelfPermission(getActivity(), ACCESS_FINE LOCATION);
int resultl = ContextCompat.checkSelfPermission(getActivity(), CAMERA);

return result == PackageManager.PERMISSION_GRANTED && resultl == PackageManager.PERMISSION_GRANTED;

}
pri i ission() {
ActivityCompat.requestPermissions(getActivity(), new String[]{ACCESS_FINE_LOCATION, CAMERA},
PERMISSION_ REQUEST_CODE);
}

 Checking to see if Location & Camera permissions are allowed
J Requesting Location & Camera permissions

Google Services — Part 2 06

MapsFragment — Permissions *

@Override

public void onRequestPermissionsResult(int requestCode, String permissions[], int[] grantResults) {

switch (requestCode) {

Ca

PERMISSION_REQUEST_CODE:
if (grantResults.length > 0) {

boolean locationAccepted = grantResults[@] == PackageManager.PERMISSION_GRANTED;
boolean cameraAccepted = grantResults[1] == PackageManager.PERMISSION_GRANTED;

 Retrieving permission
status

if (locationAccepted && cameraAccepted)

Snackbar.make(getView(), "Permission Granted, Now you can access location data and camer
Snackbar.LENGTH_LONG) . show() ;

else {

Snackbar.make(getView(), "Permission Denied, You cannot access location data and camera."”,
Snackbar.LENGTH_LONG) . show();

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
if (shouldShowRequestPermissionRationale(ACCESS_FINE_LOCATION)) {

showMessageOKCancel("You need to allow access to both the permissions"”,

new DialogInterface.OnClickListener() {
@Override

public void onClick(DialogInterface dialog, int which) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
requestPermissions(new String[]{ACCESS_FINE_LOCATION, CAMERA},

PERMISSION_REQUEST_CODE) ;

}
});

return;

J Updating the User

Mapskragment — Tracking Location (1) *

protected void startlLocationUpdates() {
mLocationRequest = new LocationRequest();
mLocationRequest.setPriority(LocationRequest.PRIORITY_BALANCED_POWER_ACCURACY);
mLocationRequest.setInterval (UPDATE_INTERVAL);
mLocationRequest.setFastestInterval(FASTEST=INTERVAL);
try A
LocationServices.FusedLocationApi.requestLocationUpdates(Home.app.mGoogleApiClient,]

mLocationRequest, this);

}
catch(SecurityException se)
{
Toast.makeText(getActivity(),"Check Your Permissions on Location Updates",Toast.LENGTH_SHORT).show();
}

}
J Create a new LocationRequest and set values
d Use the FusedLocationApi to requestlocationUpdats

Google Services — Part 2 68

5D

MapsFragment — Tracking Location (2) *

public void onLocationChanged(Location location) {
// Report to the UI that the location was updated
String msg = "Updated location: ™ +
Double.toString(location.getLatitude()) + *,"
Double. toString(location.getLongitude());
//Toast.makeText (getActiv+ - - : " SHORT) .show() ;
Log.v("coffeemate", "onLocationChanged() = " + msg);
{ mCurrentLocation = location;
}

initCamera(mCurrentLocation);

J Get individual latitude and longitude whenever there’s a
location change

J Update our current location (nCurrentLocation) and
Initialise/reposition the camera

Google Services — Part 2 69

MapsFragment — Helper Methods *

(pri id initLi 0 {) i '
e o sty - Adding necessary listeners to
mMap.setOnMapLongClickListener(this); our GoogleMap reference.

mMap.setOnInfoWindowClickListener(this);
mMap.setOnMapClickListener(this);

C Y,

private void initCamera(Location location) {

J Position/reposition the
Camera based on current
location and set zoom ratio.

if (zoom != 13f && zoom != mMap.getCameraPosition().zo;;}\
zoom = mMap.getCameraPosition().zoom;

CameraPosition position = CameraPosition.builder()
.target(new LatLng(location.getLatitude(),
location.getLongitude()))
. zoom(zoom)
.bearing(0.0f)

__ huita(); J

-
mMap.animateCamera(CameraUpdateFactory
. .newCameraPosition(position), null);

}

o

MapsFragment — Adding Coffee Markers *

f@0verride) ' .
public void setList(List list) { - Trlggered by our CO'F'FEEApl
Home.app.coffeeList = list; callback
addCoffees(Home.app.coffeelList); . .
N Y - Traversing our list of coffees
and adding a location marker
public void addCoffees(List<Coffee> list) to thEB map
{
f?br(Coffee c : list))
mMap.addMarker(new MarkerOptions()
.position(new LatLng(c.marker.coords.latitude, c.marker.coords.longitude))
.title(c.name + " €" + c.price)
.snippet(c.shop + " " + c.address)
.icon(BitmapDescriptorFactory. fromResource(R.drawable.coffee_icon)));
. g /

Google Services — Part 2 71

Relevant Links

J

J

Location APIs
https://developer.android.com/google/play-services/location.html

Setting Up Google Play Services
https://developer.android.com/google/play-services/setup.html

Getting the Last Known Location
http://developer.android.com/training/location/retrieve-current.html

Receiving Location Updates
http://developer.android.com/training/location/receive-location-updates.html

Displaying a Location Address
http://developer.android.com/training/location/display-address.html

Questions?

