Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

JSON & Googles Gson

05 - Persistence & Multithreading 2

A Dbit about
JSON
&
Googles
Gson

Question? o
- Given a particular set of data, how do you store it permanently?
- What do you store on disk”
- What format”?
. Can you easily transmit over the web?
- Wil it be readable by other languages”?
. Can humans read the data”
J Examples:
- A Square
- A Dictionary
- A Donation...

Storage Using Plain Text

J Advantages

Human readable (good for debugging / manual editing)
Portable to different platforms

—asy to transmit using web

4 Disadvantages
- Takes more memory than necessary

 Alternative? - use a standardized system -- JSON
- Makes the information more portable

JavaScript Object Notation — What is it”?
 Language Independent.

J Text-based.
d Light-weight.

J Easy to parse.

05 - Persistence & Multithreading 6

JavaScript Object Notation — What is it” i

= JSON is lightweight text-data interchange format
= JSON is language independent”
*JSON uses JavaScript syntax for describing data objects
= JSON parsers and JSON libraries exists for many different
programming languages.
= JSON is "self-describing” and easy to understand
= JSON - Evaluates to JavaScript Objects

- The JSON text format is syntactically identical to the code for
creating JavaScript objects.

Because of this similarity, instead of using a parser, a JavaScript
program can use the built-in eval()*™* function and execute JSON
data to produce native JavaScript objects.

When to use JSON? @

d SOAP is a protocol specification for exchanging structured
information in the implementation of Web Services.

1 SOAP internally uses XML to send data back and forth.

JREST is a design concepit.

 You are not limited to picking XML to represent data, you
could pick anything really (JSON included).

JSON example

"firstName": "John",
"lastName": "Smith",

"age": 25,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": 10021
L
"phoneNumbers": |
{
"type": "home",
"number"; "212 555-1234"
b
{
"type": "fax",
"number": "646 555-4567"
}
]

05 - Persistence & Multithreading 9

JSON to XML

<?xml version="1.0" encoding="UTF-8"?>

<persons>
<person>
<firstName>John</firstName>
<lastName>Smith</lastName>
<age>2b</age>
<address>
<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>
</address>
<phoneNumbers>
<phoneNumber>
<number>212 555-1234</number>
<type>home</type>
</phoneNumber>
<phoneNumber>
<number>646 555-4567</number>
<type>fax</type>
</phoneNumber>
</phoneNumbers>
</person>
</persons>

05 - Persistence & Multithreading

JSON vs XML size =

Jd XML: 549 characters, 549 bytes
1 JSON: 326 characters, 326 bytes
J XML ~68,4 % larger than JSON!

J But a large data set is going to be large regardless of the data
format you use.

J Most servers gzip or otherwise compress content before
sending it out, the difference between gzipped JSON and
gzipped XML isn’t nearly as drastic as the difference between
standard JSON and XML.

JSON vs XML

Favor XML over JSON when any of these is true:

d You need message validation

d You're using XSLT

d Your messages include a lot of marked-up text

J You need to interoperate with environments that don't support JSON

Favor JSON over XML when all of these are true:

d Messages don't need to be validated, or validating their deserialization is simple
d You're not transforming messages, or transforming their deserialization is simple
- Your messages are mostly data, not marked-up text

d The messaging endpoints have good JSON tools

k %

 The eval() function can compile and execute any JavaScript.
This represents a potential security problem.

1t is safer to use a JSON parser (like Gson) to convert a JSON
text to a JavaScript object. A JSON parser will recognize only
JSON text and will not compile scripts.

JIn browsers that provide native JSON support, JSON parsers
are also faster.

J Native JSON support is included in newer browsers and in the
newest ECMAScript (JavaScript) standard.

Security problems

JSON Schema
J Describes your JSON data format

 http://ijsonschemalint.com/

A http://json-schema.org/implementations

 http://en.wikipedia.org/wiki/
JSON#Schema_and_Metadata

05 - Persistence & Multithreading

JSON Values

JSON values can be:

J A number (integer or floating point)
J A string (in double quotes)

1 A boolean (true or false)

- An object (in curly brackets)

J An array (in square brackets)

1 null

JSON Values

J Object
- Unordered set of name-value pairs
- names must be strings
. {name1l : valuel, name?2 : value?, ..., nameN : valueN }

Jd Array
- Ordered list of values
. [valuel, value?, ... valueN |

Value

string

number

object
array
true

false

null

05 - Persistence & Multithreading 17

Strings

- Sequence of O or more Unicode characters

- No separate character type

- A character Is represented as a string with a length of 1
Jd Wrapped in "double quotes™
- Backslash escapement

String

.- Any UNICODE character except -.

" or \ orcontrol character

4 hexadecimal digits

05 - Persistence & Multithreading

Numbers

 Integer
J Real
1 Scientific

1 No octal or hex
JdNONaN or Infinity
- Use null instead

05 - Persistence & Multithreading 20

05 - Persistence & Multithreading 21

Booleans

J true
1 false

05 - Persistence & Multithreading 22

null
J A value that isn't anything

05 - Persistence & Multithreading 23

Object

1 Objects are unordered containers of key/value pairs
1 Objects are wrapped in { }

 , separates key/value pairs

 : separates keys and values

- Keys are strings

- Values are JSON values

. struct, record, hashtable, object

Object

o © a

o
{
" 1d":"5605157701t76130300c69953",
"usertoken":"11343761234567808125",
"paymenttype”:"PayPal",
"ov':io,
"upvotes":0,
"amount" :1999
}

Array

 Arrays are ordered sequences of values
- Arrays are wrapped in []

- , separates values
1 JSON does not talk about indexing.
- An iImplementation can start array indexing at O or 1.

Array
© a
o
|
{" i1d":"5605157701f76130300c69953", "usertoken":"11343761234567808125", "
paymenttype":"PayPal"," v":0,"upvotes":0,"amount":1999},

{" 1d":"56125240421892030048403d", "usertoken":"11343761234567808125", "
paymenttype":"PayPal"," v":0,"upvotes":5,"amount":1234},

{" i1d":"5627620ac9e9e303005b113c", "usertoken":"11343761234567808125", "
paymenttype":"Direct"," v":0,"upvotes":2,"amount":1001}

]

MIME Media Type & Character
Japplication/json

4 Strictly UNICODE.
 Default: UTF-8.

JUTF-16 and UTF-32 are allowed.

—Nncoding

Versionless

1 JSON has no version number.

- No revisions to the JSON grammar are anticipated.

J JSON is very stable.

05 - Persistence & Multithreading 29

Rules

J A JSON decoder must accept all well-formed JSON
text.

J A JSON decoder may also accept non-dSON text.

J A JSON encoder must only produce well-formed JSON
text.

 Be conservative in what you do, be liberal in what you
accept from others.

CoffeeMate

&
(Googles Gson

Google’s Gson

https://sites.google.com/site/gson/gson-user-quide

Gson is a Java library that can be used to convert Java Objects into
their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. Gson is an open-source project hosted at
http://code.google.com/p/google-gson.

Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code of.

CoffeeMate & Google’s Gson

 To create a POJO from a JSON String we can do
Somethlng like this (. fromJson ())

// Result handling

Coffee result = null;

Type objType = new TypeToken<Coffee>(){}.getType();
result = new Gson().fromJson(response, objType);

d To convert a POJO to a JSON String we can do
something like this (. toJdson ())

TyBe 6bjT§pe = new‘TypeToken<Coffée>(){}.getType();
String json = new Gson().toJlson(aCoffee, objType);

JSON Summary

J JSON is a standard way to exchange data
- Easily parsed by machines
- Human readable form

1 JSON uses dictionaries and lists
« Dictionaries are unordered
. Lists are ordered

J GSON is Googles JSON parser
- Very simple to use

Sources

Ry My Eipy Hipy

L L

u

tp://en.wikipedia.org/wiki/JSON

tp:// www.w3schools.com/json/

tp://[son-schema.org

N
N
Nttp://Www.{son.org/
N
N

tp://www.nczonline.net/blog/2008/01/09/is-|son-

netter-than-xml/

nttp://en.wikipedia.org/wiki/SOAP _(protocol)

nttp://en.wikipedia.org/wiki/REST

nttp://stackoverflow.com/questions/16626021/json-

rest-soap-wsdl-and-soa-how-do-they-all-link-together

