
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Persistence,"
Multithreading & Networking

05 - Persistence & Multithreading
 2!

Agenda & Goals

❑ Be aware of the different approaches to data persistence and

multithreading in Android Development
❑ Be able to work with the SQLiteOpenHelper and
SQLiteDatabase classes to implement an SQLite
database on an Android device (to manage our Coffees)

❑ Be able to work AsyncTasks and Volley to execute
background tasks and make API calls

05 - Persistence & Multithreading
 3!

 !
CoffeeMate.4.0 

Using an SQLite Database

05 - Persistence & Multithreading
 4!

Main Idea – why do we need Persistence?

❑ Android can shut down and restart your app

■  When you rotate the screen

■  When you change languages

■  When your app is in background and Android is short

on memory

■  When you hit the Back button

❑ Problem

■  You risk losing user changes and data

❑ Solutions ??

05 - Persistence & Multithreading
 5!

Solutions

❑  Android has a number of methods for data storage and retrieval

■  SQLite database

⬥  Androids default Database engine is SQLite. SQLite is a lightweight transactional database engine that occupies a

small amount of disk storage and memory, so its a perfect choice for creating databases on many mobile operating
systems.

■  Bundle class

⬥  A mapping from String values to various Parcelable types and functionally equivalent to a standard Map.

⬥  Does not handle Back button scenario. App restarts from scratch with no saved data in that case.

■  SharedPreferences

⬥  a lightweight mechanism to store and retrieve key-value pairs of primitive data types. It is typically used to store

application preferences, such as a default greeting or a text font to be loaded whenever the application is started. In
our Case study, we’ll store a simple username/password.

■  File

⬥  Use java.io.* to read/write data on the device's internal storage.

■  ContentProvider

⬥  An interface used between applications. A Mechanism to store/access private data.

⬥  The server application that hosts the data manages it through basic create, read, update, and delete (CRUD)

operations.

05 - Persistence & Multithreading
 6!

CoffeeMate 4.0 – Project Structure

■  12 java source files

⬥  Our Database classes

■  xml layouts

■  xml menu

■  xml files for resources

■  xml ‘configuration’ file

05 - Persistence & Multithreading
 7!

Idea

❑ Goal

■  Enhance CoffeeMate.3.0 by managing the Coffees in an
SQLite Database.

❑ Approach

■  Implement/extend specific classes to add the database

functionality to the app – Practical Lab 5

05 - Persistence & Multithreading
 8!

Overview : Database Programming in Android

❑  Android uses the SQLite database engine, a self-contained, transactional database engine that requires no

separate server process

■  It is used by many applications and environments beyond Android, and is being actively developed by a large community

❑  The process that initiates a database operation, such as a SELECT or UPDATE, does the actual work of reading
or writing the disk file that contains the database in order to fulfill the request

❑  With SQLite, the database is a simple disk file. All of the data structures making up a relational database -
tables, views, indexes, etc. - are within this file

❑  RDBMS is provided through a library so it becomes part of your app

❑  You can use the SQL you learned in a database module

❑  You should use DB best practices

■  Normalize data

■  Encapsulate database info in helper or wrapper classes

■  Don’t store files (e.g. images or audio), Instead just store the path string

05 - Persistence & Multithreading
 9!

CoffeeMate - DBDesigner

Our Table & Column names

 (for SQL)

Creating the Table (or Tables)

Drop the Table (if we change
the schema)

05 - Persistence & Multithreading
 10!

CoffeeMate - DBManager

ContentValues are key/value pairs
that are used when inserting/

updating databases. Each
ContentValue object corresponds to

one row in a table

Our database reference

Returns a reference to the
database created from our

SQL string

05 - Persistence & Multithreading
 11!

CoffeeMate - DBManager

This method ‘converts’ a Cursor
object into a Coffee Object

A Cursor provides random read-
write access to the resultset
returned by a database query

05 - Persistence & Multithreading
 12!

Other Cursor Functions

❑ moveToPrevious

❑ getCount

❑ getColumnIndexOrThrow

❑ getColumnName

❑ getColumnNames

❑ moveToPosition

❑ getPosition

05 - Persistence & Multithreading
 13!

 !
CoffeeMate.5.0 

Multithreading, 
AsyncTasks & Volley

05 - Persistence & Multithreading
 14!

Background Processes in General

❑ One of the key features of Android (and iPhone) is the ability

to run things in the background

■  Threads

⬥ Run something in the background while user interacts
with UI

■  Services

⬥ Regularly or continuously perform actions that don’t

require a UI

05 - Persistence & Multithreading
 15!

Threads

❑ Recall that Android ensures responsive apps by

enforcing a 5 second limit on Activities

❑ Sometimes we need to do things that take longer than 5

seconds, or that can be done while the user does
something else

❑ Activities, Services, and Broadcast Receivers run on the
main application thread

❑ But we can start background/child threads to do other
things for us

05 - Persistence & Multithreading
 16!

Android Thread Constraints

❑ Child threads cannot access UI elements (views); these

elements must (and can only) be accessed through the
main thread

❑ So what do you do?

■  You pass results to the main thread and let it use the

results

05 - Persistence & Multithreading
 17!

Multithreading – Our Splash Screen

2 secs
later

05 - Persistence & Multithreading
 18!

q  The AsyncTask class allows to perform background operations and
publish results on the UI thread without having to manipulate threads and/
or handlers.

q  An asynchronous task is defined by a computation that runs on a
background thread and whose result is published on the UI thread.

q  An asynchronous task is defined by

3 Generic Types	 4 Main States	 1 Auxiliary Method	

Params,
Progress,!
Result	

onPreExecute,
doInBackground,
onProgressUpdate
onPostExecute.	

publishProgress	

Using the AsyncTask class

h#p://developer.android.com/reference/android/os/AsyncTask.html	

05 - Persistence & Multithreading
 19!

q Not	all	types	are	always	used	by	an	asynchronous	task.		To	mark	a	
type	as	unused,	simply	use	the	type	Void	

Note:	
Syntax	“String	...”	 indicates	(Varargs)	array	of	String	values,		similar	to	“String[]”	

AsyncTask <Params, Progress, Result>

AsyncTask's generic types	

Params: the type of the input parameters sent to the task at execution.	
Progress: the type of the progress units published during the background computation.	

Result: the type of the result of the background computation.	

Using the AsyncTask class

05 - Persistence & Multithreading
 20!

Using the AsyncTask class

❑ onPreExecute

■  is invoked before the execution.

❑  onPostExecute

■  is invoked after the execution.

❑ doInBackground

■  the main operation. Write your heavy operation here.

❑ onProgressUpdate

■  Indication to the user on the current progress. It is
invoked every time publishProgress() is called.

05 - Persistence & Multithreading
 21!

Using the
AsyncTask class

1!

2!

3!

4!

05 - Persistence & Multithreading
 22!

AsyncTask's methods	
onPreExecute(), invoked on the UI thread immediately after the task is executed. This step is normally
used to setup the task, for instance by showing a progress bar in the user interface.	

doInBackground(Params...), invoked on the background thread immediately after onPreExecute() finishes
executing. This step is used to perform background computation that can take a long time. The parameters
of the asynchronous task are passed to this step. The result of the computation must be returned by this
step and will be passed back to the last step. This step can also use publishProgress(Progress...) to
publish one or more units of progress. These values are published on the UI thread, in the
onProgressUpdate(Progress...) step.	
onProgressUpdate(Progress...), invoked on the UI thread after a call to publishProgress(Progress...).
The timing of the execution is undefined. This method is used to display any form of progress in the
user interface while the background computation is still executing. For instance, it can be used to
animate a progress bar or show logs in a text field.	

onPostExecute(Result), invoked on the UI thread after the background computation finishes. The result of
the background computation is passed to this step as a parameter.	

Using the AsyncTask class

05 - Persistence & Multithreading
 23!

AsyncTask Lifecycle

PENDING!

RUNNING!

FINISHED!

ASYNCTASK.STATUS.PENDING!

ASYNCTASK.STATUS.RUNNING!

ASYNCTASK.STATUS.FINISHED!

05 - Persistence & Multithreading
 24!

CoffeeMate!
& !

Googles Gson !

05 - Persistence & Multithreading
 25!

Google’s Gson

https://sites.google.com/site/gson/gson-user-guide

Gson is a Java library that can be used to convert Java Objects into
their JSON representation. It can also be used to convert a JSON string
to an equivalent Java object. Gson is an open-source project hosted at
http://code.google.com/p/google-gson.

Gson can work with arbitrary Java objects including pre-existing objects
that you do not have source-code of.

05 - Persistence & Multithreading
 26!

CoffeeMate & Google’s Gson

05 - Persistence & Multithreading
 27!

❑ To create a POJO from a JSON String we can do
something like this (.fromJson())

❑ To convert a POJO to a JSON String we can do
something like this (.toJson())

CoffeeMate Example!
(Using AsyncTasks)!

05 - Persistence & Multithreading
 28!

CoffeeMate 5.0 AsyncTasks (and more)

■  api classes for calling
REST service

■  AsyncTasks for CRUD
(and callback mechanism to update UI)

05 - Persistence & Multithreading
 29!

CoffeeMate 5.0 AsyncTasks

05 - Persistence & Multithreading
 30!

CoffeeApi

Used for passing/
retrieving JSON coffee

data

05 - Persistence & Multithreading
 31!

Rest.java (extract)

Used for making the web
service calls

05 - Persistence & Multithreading
 32!

AsyncTask -TaskManager

Calling our
AsyncTasks

In our CoffeeFragment

05 - Persistence & Multithreading
 33!

AsyncTask -BaseTask

CallBack
Reference!

05 - Persistence & Multithreading
 34!

Callback Interface

❑ Necessary, due to AsyncTasks in separate classes

❑ Reference maintained in BaseTask

❑ Set in subclass Task, via TaskManager, e.g.

05 - Persistence & Multithreading
 35!

Callback Interface

❑ Invoked in relevant methods

In our
GetTask

In our Edit
Activity

05 - Persistence & Multithreading
 36!

Callback Interface

❑ Overridden in class that implements the interface

In our Edit
Activity

05 - Persistence & Multithreading
 37!

AsyncTask -GetAllTask

Remaining Tasks
implemented in a similar

fashion

05 - Persistence & Multithreading
 38!

CoffeeFragment (Extracts)

Overriding the necessary
methods from the

interface

05 - Persistence & Multithreading
 39!

Android Networking!
(Using Volley)!

05 - Persistence & Multithreading
 40!

Volley is an HTTP library developed by Google that
makes networking for Android apps easier and most
importantly, faster. Volley is available through the
open AOSP repository.

Introduced during Google I/O 2013, it was developed
because of the absence, in the Android SDK, of a
n e t w o r k i n g c l a s s c a p a b l e o f w o r k i n g
without interfering with the user experience.

05 - Persistence & Multithreading
 41!

Volley

❑  Volley offers the following benefits:

■  Automatic scheduling of network requests.

■  Multiple concurrent network connections.

■  Transparent disk and memory response caching with standard HTTP

cache coherence.

■  Support for request prioritization.

■  Cancellation request API. You can cancel a single request, or you can set blocks

or scopes of requests to cancel.

■  Ease of customization, for example, for retry and backoff.

■  Strong ordering that makes it easy to correctly populate your UI with data fetched

asynchronously from the network.

■  Debugging and tracing tools.

05 - Persistence & Multithreading
 42!

Why Volley?

❑ Avoid HttpUrlConnection and HttpClient

■  On lower API levels (mostly on Gingerbread and Froyo),
HttpUrlConnection and HttpClient are far from being perfect.
There are some known issues and bugs that were never fixed.

■  Moreover, HttpClient was deprecated in the last API update (API
22), which means that it will no longer be maintained and may be
removed in a future release.

■  These are sufficient reasons for deciding to switch to a more
reliable way of handling your network requests.

43!05 - Persistence & Multithreading

Why Volley?

❑ Avoid AsyncTask

■  Since the introduction of Honeycomb (API 11), it's been mandatory to
perform network operations on a separate thread, different from the
main thread. This substantial change led the way to massive use of
the AsyncTask<Params, Progress, Result> specification.

■  The class is pretty straightforward, way easier than the
implementation of a service, and comes with a ton of examples
and documentation.

■  The main problem (next slide), however, is the serialization of the
calls. Using the AsyncTask class, you can't decide which request
goes first and which one has to wait. Everything happens FIFO, first
in, first out.

44!05 - Persistence & Multithreading

Problem Solved…

❑  The problems arise, for example, when you have to load a list of items

that have attached a thumbnail. When the user scrolls down and
expects new results, you can't tell your activity to first load the JSON of
the next page and only then the images of the previous one. This can
become a serious user experience problem in applications such as
Facebook or Twitter, where the list of new items is more important than
the thumbnail associated with it.

❑  Volley aims to solve this problem by including a powerful cancellation
API. You no longer need to check in onPostExecute whether the
activity was destroyed while performing the call. This helps avoiding
an unwanted NullPointerException.

45!05 - Persistence & Multithreading

Why Volley?

❑ It's Much Faster

■  Some time ago, the Google+ team did a series of performance
tests on each of the different methods you can use to make
network requests on Android. Volley got a score up to ten times
better than the other alternatives when used in RESTful
applications.

❑ Small Metadata Operations

■  Volley is perfect for small calls, such as JSON objects, portions of

lists, details of a selected item, and so on. It has been devised for
RESTful applications and in this particular case it gives its very
best.

46!05 - Persistence & Multithreading

Why Volley?

❑ It Caches Everything

■  Volley automatically caches requests and this is something truly life-
saving. Let’s return for a moment to the example given earlier. You
have a list of items—a JSON array let’s say—and each item has a
description and a thumbnail associated with it. Now think about what
happens if the user rotates the screen: the activity is destroyed, the list
is downloaded again, and so are the images. Long story short, a
significant waste of resources and a poor user experience.

■  Volley proves to be extremely useful for overcoming this issue. It
remembers the previous calls it did and handles the activity
destruction and reconstruction. It caches everything without you
having to worry about it.

47!05 - Persistence & Multithreading

Why Not Volley?

❑ It is not so good, however, when employed for

streaming operations and large downloads. Contrary to
common belief, Volley's name doesn't come from the
sport dictionary. It’s rather intended as repeated bursts
of calls, grouped together. It's somehow intuitive why
this library doesn't come in handy when, instead of a
volley of arrows, you want to fire a cannon ball.

48!05 - Persistence & Multithreading

Under the Hood

❑ Volley works on

three different
levels with each
level operating on
its own thread.

49!05 - Persistence & Multithreading

Under the Hood

❑ Main Thread

■  On the main thread, consistently with what you already do in the
AsyncTask specification, you are only allowed to fire the request
and handle its response. Nothing more, nothing less.

■  The main consequence is that you can actually ignore everything
that was going on in the doInBackground method. Volley
automatically manages the HTTP transactions and the catching
network errors that you needed to care about before.

50!05 - Persistence & Multithreading

Under the Hood

❑ Cache and Network Threads

■  When you add a request to the queue, several things happens under
the hood. First, Volley checks if the request can be serviced from
cache. If it can, the cached response is read, parsed, and delivered.
Otherwise it is passed to the network thread.

■  On the network thread, a round-robin with a series of threads is
constantly working. The first available network thread dequeues the
request, makes the HTTP request, parses the response, and writes it
to cache. To finish, it dispatches the parsed response back to the
main thread where your listeners are waiting to handle the result.

51!05 - Persistence & Multithreading

Getting Started With Volley

❑ Download the Volley Source

■  git clone https://android.googlesource.com/platform/frameworks/volley

❑ Import Source as Module
■  File -> New Module, choose Import Existing Project

■  Add dependency compile project(':volley')

❑ Alternative – unofficial mirror site so beware

■  compile 'com.mcxiaoke.volley:library-aar:1.0.15'

52!05 - Persistence & Multithreading

Using Volley

❑ Volley mostly works with just two classes, RequestQueue

and Request. You first create a RequestQueue, which
manages worker threads and delivers the parsed results
back to the main thread. You then pass it one or more
Request objects.

❑ The Request constructor always takes as parameters the
method type (GET, POST, etc.), the URL of the resource,
and event listeners. Then, depending on the type of request,
it may ask for some more variables.

53!05 - Persistence & Multithreading

Using Volley

❑  Here we create a RequestQueue

object by invoking one of Volley's
convenience methods,
Volley.newRequestQueue.
This sets up a RequestQueue
object, using default values defined
by Volley.

❑  As you can see, it’s incredibly
straightforward. You create the
request and add it to the request
queue. And you’re done.

❑  If you have to fire multiple requests
in several activities, you should
avoid using this approach - better
to instantiate one shared request
queue and use it across your
project (CoffeeMate 5.0)

54!05 - Persistence & Multithreading

CoffeeMate Example!
(Using Volley)!

05 - Persistence & Multithreading
 55!

CoffeeMate 5.0 API & Callback Interface

56!05 - Persistence & Multithreading

■  api class for calling
REST service

■  callback mechanism to
update UI

CoffeeMate 5.0 & Volley

57!05 - Persistence & Multithreading

❑  Here we ‘attach’ our VolleyListener to the
Fragment (CoffeeFragment) and then getAll() of
the current users coffees.

❑  This method triggers a call to setList() via the
callback interface, which in turn updates the UI
ONLY when our API call completes.

❑  We use a similar approach for Updating, Deleting
etc.

CoffeeApi –
refactored with

Volley

58!05 - Persistence & Multithreading

❑  Here we create a StringRequest
GET request.

❑  On a successful RESPONSE we convert
the result into a List of coffees and

❑  Trigger the callback to set the list in the
fragment (and cancel the refresh
spinner)

CoffeeFragment (Extracts)

Overriding the necessary
methods from the

interface

05 - Persistence & Multithreading
 59!

CoffeeMate 5.0 – Using AsyncTasks Vs Volley

❑ Using AsyncTasks

■  CoffeeApi

■  CallBackListener

■  Rest

■  TaskManager

■  CRUD Tasks x 6

❑ Total = 10 Classes

❑ Using Volley

■  CoffeeApi

■  VolleyListener

❑ Total = 2 Classes

05 - Persistence & Multithreading
 60!

Summary

❑ We looked at data persistence and multithreading in Android

Development and how to use an SQLite database
❑ We covered a brief overview of JSON & Googles Gson

❑ We covered in detail the use of AsyncTasks and Volley

to execute background tasks and make API calls

❑ We Compared the two in our CoffeeMate Case Study

05 - Persistence & Multithreading
 61!

References

❑ Victor Matos Notes – Lesson 13 (Cleveland State

University)

❑ Android	Developers
	h#p://developer.android.com/index.html	

❑ h#p://code.tutsplus.com/tutorials/an-introducIon-to-
volley--cms-23800	

05 - Persistence & Multithreading
 62!

Questions?!

05 - Persistence & Multithreading
 63!

Appendix!
q Multithreading Overview!
q Using a Splash & Login Screen!
q Files!
q Content Providers!
q REST!

q And a bit on Bundles…!

05 - Persistence & Multithreading
 64!

Multithreading Overview

05 - Persistence & Multithreading
 65!

Threads

h#p://developer.android.com/reference/java/lang/Thread.html	

q  A Thread is a concurrent unit of execution.

q  Each thread has its own call stack. The call stack is used on
method calling, parameter passing, and storage for the called
method’s local variables.

q  Each virtual machine instance has at least one main thread."

q  Threads in the same VM interact and synchronize by the use

of shared objects and monitors associated with these objects.

05 - Persistence & Multithreading
 66!

Process	1	(Virtual	Machine	1)	

Common	memory	
resources	

Thread-1	
Thread-2	

Main	
thread	

Common	memory	
resources	

main	
thread	

Process	2	(Virtual	Machine	2)	

Threads

05 - Persistence & Multithreading
 67!

Advantages of Multithreading

❑ Threads share the process' resources but are able to execute

independently.

❑ Applications responsibilities can be separated

■  main thread runs UI, and

■  slow tasks are sent to background threads.

❑ Threading provides an useful abstraction of concurrent
execution.

❑ A multithreaded program operates faster on computer
systems that have multiple CPUs. "
(Java 8 supports multi-core multi-threading)

05 - Persistence & Multithreading
 68!

!
!

q  Code tends to be more complex

q  Need to detect, avoid, resolve
deadlocks

A1	
!

WaiIng	for	A2	
to	finish	

A2	
!

WaiIng	for	A1	
to	finish	

A2	
A3	

A1	

Disadvantages

05 - Persistence & Multithreading
 69!

!

Problem: 	An	application	may	involve	a	Ime-consuming	operaIon.	
Goal: 	We	want	the	UI	to	be	responsive	to	the	user	in	spite	of	heavy	load.	

Solu>on: 	Android	offers	two	ways	for	dealing	with	this	scenario:	
!
!

1.  Do	expensive	operaIons	in	a	background	service,	using	
no#fica#ons	to	inform	users	about	next	step	

!
!

2.  Do	the	slow	work	in	a	background	thread.	
!
!
Using	Threads:		InteracIon	between	Android	threads	is	accomplished	using	

(a)  a	main	thread	Handler	object	and	
(b)  posIng	Runnable	objects	to	the	main	view.	

Android‘s Approach to Slow Activities

05 - Persistence & Multithreading
 70!

There	are	basically	two	main	ways	of	having	a	Thread	execute	application	code.	
!
!

q  Create	a	new	class	that	extends	Thread	and	override	its	
run()	method.	

MyThread	t	=	new	MyThread();	
t.start();	

!
!

q  Create	a	new	Thread	instance	passing	to	it	a	Runnable	object.	
!

Runnable	myRunnable1	=	new	
MyRunnableClass();	Thread	t1	=	new	
Thread(myRunnable1);	t1.start();	

!
!

In	both	cases,	the	start()	method	must	be	called	to	actually	execute	the	new	
Thread.	

Thread Execution – Example

05 - Persistence & Multithreading
 71!

Using a Splash Screen

&

Login Screen

05 - Persistence & Multithreading
 72!

What do we want exactly?

❑ Display Splash Screen for a

few seconds

❑ Display Login Screen

❑ Only show Home Screen

once valid details entered

05 - Persistence & Multithreading
 73!

Splash

Start Login Screen via Intent

Handler object associated with
single thread

05 - Persistence & Multithreading
 74!

Update Manifest File

Activity to
Launch

05 - Persistence & Multithreading
 75!

Using SharedPreferences

05 - Persistence & Multithreading
 76!

SharedPreferences (1)

§  Two forms:

ú  Share across all components in an application

   getSharedPreferences(“SomeString”,Activity.MODE_PRIVATE);

ú  Store only data needed by this Activity

   getPreferences(Activity.MODE_PRIVATE);

ú  Store only data needed by this Activity when Activity becomes inactive
(but not when finished)

   Eg. Orientation change from portrait to landscape

   use Bundle in onSaveInstanceState / onRestoreInstanceState / onCreate

05 - Persistence & Multithreading
 77!

SharedPreferences (2)

❑ Add data in the form : <String Key,String Value>

SharedPreferences settings
 = this.getSharedPreferences("Demo",

MODE_PRIVATE);
SharedPreferences.Editor editor =

settings.edit(); editor.putString("name", "value");
editor.commit();

String str = settings.getString("name",
"defaultValue");

editor.clear().commit();

q Reset the preferences (clear)

q Use ‘Key’ to get ‘Value’

q Create your SharedPreferences instance

05 - Persistence & Multithreading
 78!

login.xml

05 - Persistence & Multithreading
 79!

Login (1)

Load your
Preferences

Default value

05 - Persistence & Multithreading
 80!

Login (2)

Update Preferences

with data

“Very Secure”

email & password

credentials!

Possibly via a

Web Service??

(Not now obviously)

05 - Persistence & Multithreading
 81!

End Result

05 - Persistence & Multithreading
 82!

Using Files!

05 - Persistence & Multithreading
 83!

File Access (Internal & External)

❑ Store data to file

❑ Use java.io.* to read/write file

❑ Only local file can be visited

■  Advantages: can store large amounts of data

■  Disadvantages: file format changes and/or updates

may result in significant programming/refactoring

❑ Very similar to file handling in java desktop applications

❑ Generally though, not recommended

05 - Persistence & Multithreading
 84!

Read from a file

❑ Open a File for input

■  Context.openFileInput(String name)

■  If failure then throw a FileNotFoundException

public Map<String,String> readFromFile(Context context){

 Map<String,String> temp = null;

 try{
 inByteStream = context.openFileInput(FILENAME);

 OIStream = new ObjectInputStream(inByteStream);

 temp = (Map<String,String>)OIStream.readObject();

 inByteStream.close();
 OIStream.close();
 }
 catch(Exception e){...}

 return temp;
 } !

05 - Persistence & Multithreading
 85!

Write to file

❑ Open a File for output

■  Context.openFileOutput(String name,int mode)

■  If failure then a new File is created

■  Append mode: to add data to file

public void writeToFile(Map<String,String> times, Context context){

 try{
 outByteStream = context.openFileOutput(FILENAME, Context.MODE_PRIVATE);
 OOStream = new ObjectOutputStream(outByteStream);
 OOStream.writeObject(times);
 outByteStream.close();
 OOStream.close();
 }
 catch(Exception e){...}

}

05 - Persistence & Multithreading
 86!

Write file to SDCard

❑ To get permission for SDCard r/w in

AndroidManifest.xml:

<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS“
/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE“
/>

05 - Persistence & Multithreading
 87!

SDCard read/write

❑ Need a SD Card, (obviously J)

if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED))
{
 File sdCardDir = Environment.getExternalStorageDirectory();
 File saveFile = new File(sdCardDir, "stuff.txt");
 FileOutputStream outStream = new FileOutputStream(saveFile);

 // Same approach as before, once you have a FileOutputStream and/or
 // FileInputStream reference...
 ...

 outStream.close();
}

05 - Persistence & Multithreading
 88!

Using ContentProviders!

05 - Persistence & Multithreading
 89!

Content Provider

❑ a content provider is a specialized type of datastore that

exposes standardized ways to retrieve and manipulate
the stored data.

❑ Apps can expose their data layer through a Content
Provider, identified by a URI.

❑ Some native apps provide Content Providers

❑ Your apps can provide Content Providers

05 - Persistence & Multithreading
 90!

Using ContentProvider to share data

❑  Content Providers are the Android platforms way of sharing information between multiple

applications through its ContentResolver interface.

❑  Each application has access to the SQLite database to maintain their information and this

cannot be shared with another application.

public class PersonContentProvider extends ContentProvider{
 public boolean onCreate()
 public Uri insert(Uri uri, ContentValues values)
 public int delete(Uri uri, String selection, String[]

 selectionArgs)
 public int update(Uri uri, ContentValues values, String

 selection, String[] selectionArgs)
 public Cursor query(Uri uri, String[] projection, String

 selection, String[] selectionArgs, String
sortOrder)
 public String getType(Uri uri)}

05 - Persistence & Multithreading
 91!

Addition to the AndroidManifest.xml

❑  Add the following user permission tag

 <uses-permission android:name="android.permission.READ_CONTACTS" />

❑  To give your application access to the contacts information.

<manifest >
 <application android:icon="@drawable/icon"

 android:label="@string/app_name">
 <provider android:name=".PersonContentProvider"

 android:authorities="ie.wit.provider.personprovider"/>
 </application>
</manifest>

05 - Persistence & Multithreading
 92!

Why is it called "Representational State Transfer"?

Resource!Client! http://www.boeing.com/aircraft/747!

Boeing747.html!

Fuel requirements!
Maintenance schedule!

...!

•  The Client references a Web resource using a URL. !
•  A representation of the resource is returned (in this case as an HTML document).!
•  The representation (e.g., Boeing747.html) places the client in a new state. !
•  When the client selects a hyperlink in Boeing747.html, it accesses another

resource. !
•  The new representation places the client application into yet another state. !
•  Thus, the client application transfers state with each resource representation.!

05 - Persistence & Multithreading
 93!

REST Characteristics

❑ REST is not a standard (unlike SOAP)

■  You will not see the W3C putting out a REST specification.

■  You will not see IBM or Microsoft or Sun selling a REST developer's toolkit.

❑ REST is just a design pattern

■  You can't bottle up a pattern.

■  You can only understand it and design your Web services to it.

❑ REST does prescribe the use of standards:

■  HTTP

■  URL

■  XML/HTML/GIF/JPEG/etc. (Resource Representations)

■  text/xml, text/html, image/gif, image/jpeg, etc. (Resource Types, MIME

Types)

05 - Persistence & Multithreading
 94!

REST Principles

❑ Everything is a resource

❑ Every resource is identified by a unique identifier

❑ Use simple and uniform interfaces

❑ Communication is done by representation

❑ Be Stateless

❑ We’ll look at these, and more, next year J.

05 - Persistence & Multithreading
 95!

Using Bundles!

05 - Persistence & Multithreading
 96!

The Bundle Class (Saving)

❑  Override onSaveInstanceState

■  And pass the Bundle to the superclass method

 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBlah(someData);
}

❑  Called

■  When user rotates screen

■  When user changes language

■  When app is hidden and Android needs the memory

❑  Not called

■  When user hits Back button

❑  Note

■  Superclass method automatically stores state of GUI widgets (EditText data, CheckBox state, etc.)

05 - Persistence & Multithreading
 97!

Bundle : Restoring Data

❑  Override onRestoreInstanceState

■  Pass Bundle to superclass method

■  Look for data by name, check for null, use the data

 protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 SomeType data = savedInstanceState.getBlah(key);
 if (data != null) { doSomethingWith(data); }
}

❑  Called

■  Any time app is restarted after onSaveInstanceState

❑  Note

■  The same Bundle is passed to onCreate.

■  Superclass method automatically restores widget state

05 - Persistence & Multithreading
 98!

The Bundle Class: Details

❑  Putting data in a Bundle

■  putBoolean, putBooleanArray, putDouble, putDoubleArray, putString, putStringArray,
etc.

⬥  These all take keys and values as arguments. "

The keys must be Strings. The values must be of the standard types (int, double,
etc.) or array of them.

■  putSerializable, putParceleable

⬥  Lets you store custom objects. Note that ArrayList and most other builtin Java

types are already Serializable

❑  Retrieving data from a Bundle

■  getBoolean, getBooleanArray, getDouble, getDoubleArray, getString, getStringArray,
etc.

⬥  No typecast required on retrieval. Numbers are 0 if no match.

■  getSerializable, getParceleable

⬥  Typecast required on retrieval. Values are null if no match.

05 - Persistence & Multithreading
 99!

Bundle Summary

❑  Save data in onSaveInstanceState

■  Can put individual pieces of data in the Bundle, or can add a composite data structure.

■  Custom classes must implement Serializable or Parceleable

❑  Load data in onRestoreInstanceState or in onCreate

■  Look in Bundle for property of given name

■  For Object types, check for null

■  For number types, check for 0 (zero)

05 - Persistence & Multithreading
 100!

Note: Preventing Screen Rotations

❑  Issue

■  Screen rotations usually require a new layout

■  They also cause the app to be shutdown and restarted

⬥ Handling this is the topic of this lecture

❑ Problem

■  What if you do not have landscape layout?

■  Or have not yet handled shutdown and restart?

❑ Solution

■  Put an entry in AndroidManifest.xml saying that app runs

only in portrait mode (or only in landscape mode).

 <activity android:name=".YourActivity"

 android:label="@string/app_name"

 android:screenOrientation="portrait">

05 - Persistence & Multithreading
 101!

More Reading

❑ JavaDoc: Activity

■  http://developer.android.com/reference/android/app/Activity.html

⬥ Introductory parts give lots of details

❑ Chapters

■  Handling Activity Lifecycle Events and

■  Handling Rotation

⬥ From The Busy Coder’s Guide to Android Development "
by Mark Murphy.

■  http://commonsware.com/Android/

05 - Persistence & Multithreading
 102!

Sources

❑ http://en.wikipedia.org/wiki/JSON

❑ http://www.w3schools.com/json/

❑ http://www.json.org/

❑ http://json-schema.org

❑ http://www.nczonline.net/blog/2008/01/09/is-json-

better-than-xml/

❑ http://en.wikipedia.org/wiki/SOAP_(protocol)

❑ http://en.wikipedia.org/wiki/REST

❑ http://stackoverflow.com/questions/16626021/json-

rest-soap-wsdl-and-soa-how-do-they-all-link-together

05 - Persistence & Multithreading
 103!

