
Produced 

by


Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie


Mobile Application Development


David Drohan (ddrohan@wit.ie)






User Interface Design"
& Development - Part 1


UI Design - Part 1
 2!



Goals of this Section

❑ Understand the basics of Android UI Development

❑ Be able to create and use some more different widgets (views) 

such as AdapterViews and ArrayAdapters

❑ Share data between Activities using Bundles (just a brief look, we’ll 

cover it and more in detail, in the Persistence lecture notes)


❑ Understand how to develop and use Fragments in a "
multi-screen app


UI Design - Part 1
 3!



Mobile Development in General

❑ When developing software for the web or a desktop 

computer, you only need to consider the mouse and the 
keyboard.


❑ With a mobile device, you must take into account the 
entire world around you (and your users)."



❑ The “60 second Vs 60 minute” Use Case


UI Design - Part 1
 4!



Possible User Input Sources

❑  Keyboard"



❑  “Click” Tap via Touch (or Stylus)"



❑ Wheel or Trackball"



❑ GPS or Network Location"



❑  Accelerometer Motion"



❑ Orientation / Compass / Altitude


❑  Vibration"



❑  Sound / Music"



❑ WiFi Coverage"



❑  Environment Lighting"



❑ Multitouch & Gestures"



❑ Device Security / Loss

UI Design - Part 1
 5!



App Structure

❑ Apps come in many varieties that address very different needs 

❑ For example:


■  Apps such as Calculator or Camera that are built around a 
single focused activity handled from a single screen


■  Apps such as Phone whose main purpose is to switch 
between different activities without deeper navigation


■  Apps such as Gmail or the Play Store that combine a broad 
set of data views with deep navigation


❑ Your app's structure depends largely on the content and tasks 
you want to surface for your users


UI Design - Part 1
 6!



App Structure


UI Design - Part 1
 7!



App Structure & The Android Framework

❑ The Android UI framework is "

organised around the common "
MVC pattern.


UI Design - Part 1
 8!



Some General UI Guidelines – (UIGs)

❑ Activity and Task Design


■  Activities are the basic, independent building blocks of 
applications. As you design your application's UI and 
feature set, you are free to re-use activities from other 
applications as if they were yours, to enrich and 
extend your application.


❑ “Everything is a Resource”

■  Many of the steps in Android programming depend on 

creating resources and then loading them or 
referencing them (in XML files) at the right time


UI Design - Part 1
 9!



UIGs - Screen Orientation

❑ People can easily change the orientation by which they 

hold their mobile devices

■  Mobile apps have to deal with changes in orientation 

frequently

■  Android deals with this issue through the use of 

resources (more on this later)

❑ Start with Portrait Orientation


■  It is natural to start by designing the UI of your main 
activity in portrait orientation


■  That is the default orientation in the Eclipse plug-in

UI Design - Part 1
 10!



UIGs - Unit Sizes

❑ Android supports a wide variety of unit sizes for specifying UI 

layouts; 

■  px (device pixel), in, mm, pt (1/72nd of an inch)


❑ All of these have problems creating UIs that work across 
multiple types of devices

■  Google recommends using resolution-independent units


⬥ dp (or dip): density-independent pixels

⬥ sp: scale-independent pixels


❑ In particular, use sp for font sizes and dp for everything else


UI Design - Part 1
 11!



UIGs - Layouts

❑ LinearLayout: Each child view is placed after the previous 

one in a single row or column

❑ RelativeLayout: Each child view is placed in relation to other 

views in the layout or relative to its parent’s layout

❑ FrameLayout: Each child view is stacked within a frame, 

relative to the top-left corner. Child views may overlap

❑ TableLayout: Each child view is a cell in a grid of rows and 

columns

❑ …


UI Design - Part 1
 12!



UIGs - Specifying the Size of a View

❑ We’ve previously discussed the use of resolution-

independent measurements for specifying the size of a 
view


❑ These values go in the XML attributes

■  android:layout_width and android:layout_height


❑ But, you can get more flexibility with 

■  fill_parent: the child scales to the size of its parent

■  wrap_content: the parent shrinks to the size of the 

child


UI Design - Part 1
 13!



Case Study!
❑ CoffeeMate – an Android App to keep track of"

your Coffees, their details, and which ones you"
like the best (your favourites)


❑ App Features

■  List all your Coffees

■  View specific Coffee details

■  Filter Coffees by Name and Type

■  Delete a Coffee

■  List all your Favourite Coffees



(View Nearby Coffees / on a Map ???)




UI Design - Part 1
 14!



CoffeeMate 2.0




Using Fragments

and 


Custom ArrayAdapters


UI Design - Part 1
 15!



CoffeeMate 2.0


No Persistence in this Version
 UI Design - Part 1
 16!



CoffeeMate 2.0


■  4 new java source files

■  2 new xml layouts


UI Design - Part 1
 17!



CoffeeMate 2.0




Using Fragments


UI Design - Part 1
 18!



Fragments - Recap

❑  Fragments represents a behaviour or a portion of a user interface in 

an Activity.

❑  You can combine multiple fragments in a single activity and reuse a 

single fragment in multiple activities.

❑  Each Fragment has its own lifecycle (next slide).

❑  A fragment must always be embedded in an activity.

❑  You perform a fragment transaction to add it to an activity.

❑ When you add a fragment as a part of your activity layout, it lives in a 

ViewGroup inside the activity's view hierarchy and the fragment 
defines its own view layout.


UI Design - Part 1
 19!



The Fragment Life Cycle

❑  To create a fragment, you must 

subclass Fragment (or an existing 
subclass of it).


❑  Has code that looks a lot like an Activity. 
Contains callback methods similar to an 
activity, such as onCreate(), 
onStart(), onPause(), and onStop(). 


❑  Usually, you should implement at least 
onCreate(), onCreateView() and 
onPause()


UI Design - Part 1
 20!



CoffeeMate 2.0




Code 

Highlights


(1)


21!UI Design - Part 1




Revisit Base


UI Design - Part 1
 22!

A Bundle for passing data between 
activities


A reference to our Custom 
Fragment




Revisit Home


UI Design - Part 1
 23!

Creating a Fragment instance and adding it to 
our Home Activity (we’ll take a close look at 

the Fragment class next)




Our ‘CoffeeFragment’ Fragment


UI Design - Part 1
 24!

Adding a Custom Adapter to our Fragment 
to manage the list of coffees


(more on this later)


Note the type of Fragment 
we extend from




Introducing Adapters (Big part of this Case Study)

❑  Adapters are bridging classes that bind data to Views (eg ListViews) used in the 

UI.

■  Responsible for creating the child Views used to represent each item within the parent View, 

and providing access to the underlying data

❑  Views that support adapter binding must extend the AdapterView abstract 

class.

■  You can create your own AdapterView-derived controls and create new Adapter classes to 

bind them.

❑  Android supplies a set of Adapters that pump data into native UI controls (next 

slide)


UI Design - Part 1
 25!



Introducing Adapters (cont’d)

❑  Because Adapters are responsible for supplying the data AND for creating 

the Views that represent each item, they can radically modify the appearance and 
functionality of the controls they’re bound to.


❑  Most Commonly used Adapters

■  ArrayAdapter


⬥  uses generics to bind an AdapterView to an array of objects of the specified class.

⬥  By default, uses the toString() of each object to create & populate TextViews.

⬥  Other constructors available for more complex layouts (as we will see later on)

⬥  Can extend the class to use alternatives to simple TextViews (as we will see later on)


❑  See also SimpleCursorAdapter – attaches Views specified within a layout to the columns of 
Cursors returned from Content Provider queries.


UI Design - Part 1
 26!



CoffeeMate 2.0




Using 

Custom ArrayAdapters


UI Design - Part 1
 27!



Customizing the ArrayAdapter

❑  By default, the ArrayAdapter uses the toString() of the object array it’s 

binding to, to populate the TextView available within the specified layout 

❑  Generally, you customize the layout to display more complex views by..


■  Extending the ArrayAdapter class with a type-specific variation, eg


■  Override the getView() method to assign object properties to layout View objects. "
(see our case study example next)





UI Design - Part 1
 28!



The getView() Method

❑  Used to construct, inflate, and populate the View that will be displayed within the 

parent AdapterView class (eg a ListView inside our ListFragment) which is 
being bound to the underlying array using this adapter


❑  Receives parameters that describes

■  The position of the item to be displayed

■  The View being updated (or null)

■  The ViewGroup into which this new View will be placed


❑  Returns the new populated View instance as a result


❑  A call to getItem() will return the value (object) stored at the specified index in the 
underlying array


UI Design - Part 1
 29!



Adapters & ListViews

❑  A ListView receives its data via an Adapter. The adapter also defines how each 

row is the ListView is displayed.

❑  The Adapter is assigned to the list via the setAdapter() / 

setListAdapter() method on the ListView / ListFragment object.

❑  ListView calls the getView() method on the adapter for each data element. In 

this method the adapter determines the layout of the row and how the data is 
mapped to the Views (our widgets) in this layout.


❑  Your row layout can also contain Views which interact with the underlying data 
model via the adapter. E.G. our ‘Delete’ option – see later.


UI Design - Part 1
 30!



CoffeeMate 2.0




Code 

Highlights


(2)


31!UI Design - Part 1




CoffeeListAdapter


UI Design - Part 1
 32!

Our constructor, associating our data (our 
list of Coffees) with the view we want to 

bind to (coffeerow)


A reference for deleting a coffee


Every time this method is called (based on the 
position) we create a new ‘CoffeeItem’ – a new 

‘Row’ to add to the Parent ViewGroup (the ListView)




CoffeeItem

This class represents a 

single row in our list


UI Design - Part 1
 33!

Inflating the ‘Current Row’


Updating the ‘Row’ with Coffee Data


‘Tagging’ the Delete Image with a 
Coffee for Deleting


Setting the ‘Rows’ id to the 
Coffee id for Editing




coffeerow (Our Custom Layout)


Each time getView() is called, it creates a 
new CoffeeItem and binds the individual 
Views (widgets) above, to each element 
of the object array in the ArrayAdapter.


UI Design - Part 1
 34!



Resulting ListView (inside our Fragment)


Our Setup method 
initially gives us this list


UI Design - Part 1
 35!



CoffeeMate 2.0




Code 

Highlights


(3)


36!UI Design - Part 1




Edit a Coffee – class CoffeeFragment


UI Design - Part 1
 37!

Remember we set the id of the 
‘row’ (v) ? Here we retrieve it, 
and store it in a Bundle so we 

know which coffee to edit




Edit a Coffee – class Edit


UI Design - Part 1
 38!

Retrieving the “id” of our selected 
coffee from the bundle and 

finding it in the arraylist


Assigning our 
Coffee object 
details to the 

widgets on our 
layout




Delete a Coffee – class CoffeeFragment


UI Design - Part 1
 39!

If the Views ‘Tag’ is a Coffee 
Object, we know the delete 

image was clicked, so we can 
delete the coffee


As well as removing the coffee from our global list, we 
need to remove it from the adapter too "

(or otherwise create a whole new adapter reference)




CoffeeMate 3.0


Still no Persistence 

in this Version


UI Design - Part 1
 40!



Questions?!

UI Design - Part 1
 41!


