Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

User Interface

&

Development -

Design

Part 1

Goals of this Section

- Understand the basics of Android Ul Development

- Be able to create and use some more different widgets (views)
such as AdapterViews and ArrayAdapters

d Share data between Activities using Bundles (ust a brief look, we'l
cover it and more in detail, in the Persistence lecture notes)

J Understand how to develop and use Fragments in a
multi-screen app

Mobile Development in General

J When developing software for the web or a desktop
computer, you only need to consider the mouse and the
keylboard.

Jd With a mobile device, you must take into account the
entire world around you (and your users).

J The “60 second Vs 60 minute” Use Case

Possible User Input Sources
J Keyboard

 “Click” Tap via Touch (or Stylus)
J Wheel or Trackball

J GPS or Network Location

J Accelerometer Motion

 Orientation / Compass / Altitude

J Vibration

J Sound / Music

J WiFi Coverage

- Environment Lighting
J Multitouch & Gestures

 Device Security / Loss

App Structure

Jd Apps come In many varieties that address very different needs

- For example:

- Apps such as Calculator or Camera that are built around a
single focused activity handled from a single screen

- Apps such as Phone whose main purpose Is to switch
between different activities without deeper navigation

- Apps such as Gmail or the Play Store that combine a broad
set of data views with deep navigation

J Your app's structure depends largely on the content and tasks
you want to surface for your users

App Structure

A typical Android app consists of top level and detail/edit views. If the navigation hierarchy is deep and complex,
category views connect top level and detail views.

My

Top level views

The top level of the app typically
consists of the different views that
your app supports. The views
either show different
representations of the same data
or expose an altogether different
functional facet of your app.

L
1]
L
-

-

11T

Category views

Category views allow you to drill
deeper into your data.

e Detail/edit view
The detail/edit view is where you
S consume or create data.

Ul Design - Part 1 7

EREEEE

App Structure & The Android Framework ‘

1 The Android Ul framework is '“'
organised around the common P '
Redraw . ", Keypresses, taps, etc.
MVC pattern. o

w
b ;
invalidate ™, < Update

*
. -
. °
. .
. .
. .
. o«
.y -
- A
‘e

Ul Design - Part 1 8

Some General Ul Guidelines — (UIGs) =

d Activity and Task Design

- Activities are the basic, independent building blocks of
applications. As you design your application’'s Ul and
feature set, you are free to re-use activities from other
applications as if they were yours, to enrich anad
extend your application.

d “Everything is a Resource”

- Many of the steps in Android programming depend on
creating resources and then loading them or
referencing them (in XML files) at the right time

UIGs - Screen Orientation

J People can easily change the orientation by which they
hold their mobile devices

- Mobile apps have to deal with changes in orientation
frequently

- Android deals with this issue through the use of
resources (more on this later)

 Start with Portrait Orientation

- It is natural to start by designing the Ul of your main
activity in portrait orientation

- That is the default orientation in the Eclipse plug-in

UIGs - Unit Sizes @

J Android supports a wide variety of unit sizes for specifying Ul
layouts;

- pX (device pixel), in, mm, pt (1/72nd of an inch)
J All of these have problems creating Uls that work across
multiple types of devices
- Google recommends using resolution-independent units
¢ dp (or dip): density-independent pixels
¢ Sp: scale-independent pixels
 In particular, use sp for font sizes and dp for everything else

UIGs - Layouts

d LinearLayout: Each child view is placed after the previous
one in a single row or column

- RelativeLayout: Each child view is placed in relation to other
views In the layout or relative to its parent’s layout

J Framelayout: Each child view is stacked within a frame,
relative to the top-left corner. Child views may overlap

 TableLayout: Each child view is a cell in a grid of rows and
columns

Jd...

UIGs - Specifying the Size of a View

JdWe've previously discussed the use of resolution-
iIndependent measurements for specitying the size of a
view

J These values go in the XML attributes
. android:layout_width and android:layout_height

J But, you can get more flexibility with
- fill_parent: the child scales to the size of its parent

. wrap_content: the parent shrinks to the size of the
child

Case Study

J CoffeeMate — an Android App to keep track of
your Coffees, their detalls, and which ones you
like the best (your favourites)

J App Features
- List all your Coffees
- View specific Coffee details
~ilter Coffees by Name and Type
Delete a Coffee
|ist all your Favourite Coffees

(View Nearby Coffees / on a Map 7??7)

CoffeeMate 2.0

Using Fragments
and
Custom ArrayAdapters

CoffeeMate 2.0

é’p CoffeeMate.2.0 ' Update a Coffee

Regular Joe

Joe's Place

Full Coffee Details

COFFEE CHECK SEARCH FAVOURITE N
", g m :

IN COFFEE'S COFFEE'S ame hegular Joe

Recently Added Coffee's

Shop : Joe's Place
Standard Black

A
x Some Shop

Are you sure you want to Delete the
'Coffee’ Regular Joe?

Price : 2.99

Regular Joe
Joe's Place

Star Rating

b ¢
Espresso
w

Ardkeen Stores * * * i

o UPDATE COFFEE
ddrohan.gitbooks.io ddrohan.gitbooks.io

O

* No Persistence in this Version

o — CoffeeMate 2.0

3 AndroidManifest.xml
v [java
v [lie.cm
v [Eactivities
© v Add
© & Base . '
@ ct —= 4 new java source files
© u Home
Y Eadwrers € - 2 new xml layouts
© & Coffeeltem
© & CoffeeListAdapter
v [E1fragments
© & CoffeeFragment
v [Edmodels
© & Coffee
> [Edie.cm (androidTest)
> [Edie.cm (test)
v [ares
» [ddrawable
v [Ellayout
& add.xml
& coffeerow.xml
= content_home.xml
& edit.xml
& help.xml
& home.xml
& info.xml
v Elmenu
& main_menu.xml
» [EImipmap

» [dvalues .
. » (& Gradle Scripts Ul Design - Part 1 17

« 7: Structure

@ Captures

CoffeeMate 2.0

Using Fragments

Fragments - Recap

J Fragments represents a behaviour or a portion of a user interface in
an Activity.

- You can combine multiple fragments in a single activity and reuse a
single fragment in multiple activities.

d Each Fragment has its own lifecycle (next slide).
d A fragment must always be embedded in an activity.
 You perform a fragment transaction to add it to an activity.

d When you add a fragment as a part of your activity layout, it lives in a
ViewGroup inside the activity's view hierarchy and the fragment

defines its own view layout.

The Fragment Life Cycle

d To create a fragment, you must s

subclass Fragment (or an existing =
SUbClaSS Of it). onCr:ate()

onCreateView() -

J Has code that looks a lot like an Activity. :

Contains callback methods similar toan ="
activity, such as onCreate(), et

onStart(), onPause(), and onStop(). ;

Fragment is
active

J Usually, you should implement at least l l

User navigates The fragment is
backward or added to the back
stack, then

onCreate(), onCreateView() and

onPause() R,

v v

onStop()

ack, r
oved/replaced removed/replaced

v v

onDestroyView()

The fragm
returns to tf
layout from th

back stack

L’ L
onDestroy()

v

onDetach()

v

(Fragment is \

destroyed

Activity State

Created

Started

Resumed

Paused

Stopped

Destroyed

Fragment Callbacks

onAttach()

v

onCreate()

v

onCreateView()

v

onActivityCreated()

'

onStart()

:

onResume()

!

onPause()

|

onStop()

:

onDestroyView()

v

onDestroy()

v

onDetach()

CoffeeMate 2.0

Code
Highlights
(1)

Revisit

—Base

public class Base extends AppCompatActivity {

A Bundle for passing data between
. - ArravList<~>(): / activities
activityvInfo: // Used for persistence (of sorts)
~ protected CoffeeFragment coffeeFragment; // How we L['share' our
s / List of Coffees between Activities
protected void goToActivity(Activity current,
Class<? extends Activity> activityClass,
Bundle bundle) {...}

public void openInfoDialog(Activity current) {...}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

A reference to our Custom

Fragment
// Inflate the menu; this adds items to the action bar if it is present

getMenuInflater().inflate(R.menu.main_menu, menu);
return true;
}

public void menuInfo(MenuItem m) { openInfoDialog(this); }

public void menuHelp(MenuItem m) { goToActivity(this, Help.class, null); }

public void menuHome(MenuItem m) { goToActivity(this, Home.class, null); }

protected void toastMessage(String s) { Toast.makeText(this, s, Toast.LENGTH_SHORT).show(); }

Ul Design - Part 1

22

Revisit Home

public class Home extends Base {

TextView recentList;

@Override
protected void onCreate(Bundle savedInstanceState) {...}

public void add(View v) { goToActivity(this,Add.class,null); }

@verride Creating a Fragment instance and adding it to
Prot'sélclt:g ‘é:;:sﬁ:‘z‘(fil_‘me” { our Home Activity (we’ll take a close look at
per. ’ the Fragment class next)

if(coffeeList.isEmpty())

recentList.setText("You have no Coffee's added, go have a coffee!");
else

recentList.setText("");

4 coffeeFragment = CoffeeFragment.newInstance(); //get a new Fragment instance
getFragmentManager()
.beginTransaction()
.replace(R. id. fragment_layout, coffeeFragment)
.commit(); // add/replace in the current activity

- J

(55}

}

public void setupCoffees(){...}

Ul Design - Part 1 23

Our ‘CoffeeFragment’ Fragment

public class CoffeeFragment extends|ListFragment |implements OnClickListener

{

protected Base activity;
protected static CoffeeListAdapter listAdapter;
protected ListView listView;

Note the type of Fragment
public CoffeeFragment() {...} we extend from
public static CoffeeFragment newInstance() {...}

@Override
public void onAttach(Context context)
{...}
@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

listAdapter = new CoffeeListAdapter(activity, this, Base.coffeelList);
setListAdapter (listAdapter);

@Override

Recently Added Coffee's

A Standard Black €1.99 9¢
\i Some Shop 25*
Regular Joe €2.99 x
Y JoesPlace 35+
Espresso €1.49 x
‘/ Ardkeen Stores 4.5*

ddrohan.gitbooks.io 0

public void onStart() { super.onStart(); } Adding a Custom Adapter to our Fragment

@Override
public void onClick(View view)

to manage the list of coffees

{...} (more on this later)
@Override
public void onListItemClick(ListView 1, View v, int position, long id)

Y

public void onCoffeeDelete(final Coffee coffee)

Y,

Ul Design - Part 1

24

INntroduci Nng Adap’[ers (Big part of this Case Study)

J Adapters are bridging classes that bind data to Views (eg ListViews) used in the
Ul.

Responsible for creating the child Views used to represent each item within the parent View,
and providing access to the underlying data

d Views that support adapter binding must extend the AdapterView abstract

class.
You can create your own AdapterView-derived controls and create new Adapter classes to
bind them.

- Android supplies a set of Adapters that pump data into native Ul controls (next
slide)

Introducing Adapters (cont’d)

1 Because Adapters are responsible for supplying the data AND for creating
the Views that represent each item, they can radically modify the appearance and
functionality of the controls they’re bound to.

J Most Commonly used Adapters

m ArrayAdapter
€ Uses generics to bind an AdapterView to an array of objects of the specified class.
¢ By default, uses the tostring () of each object to create & populate TextViews.
¢ Other constructors available for more complex layouts (as we will see later on)
¢ Can extend the class to use alternatives to simple TextViews (as we will see later on)

d See also SimpleCursorAdapter — attaches Views specified within a layout to the columns of
Cursors returned from Content Provider queries.

CoffeeMate 2.0

Using
Custom ArrayAdapters

Customizing the ArrayAdapter

- By default, the ArrayAdapter uses the toString () of the object array it’s
binding to, to populate the TextView available within the specified layout

d Generally, you customize the layout to display more complex views by..
Extending the ArrayAdapter class with a type-specific variation, eg

public class CoffeeListAdapter extends ArrayAdapteE<Coffee>]{

Override the getVview() method to assign object properties to layout View objects.
(see our case study example next)

The getvView () Method %

- Used to construct, inflate, and populate the View that will be displayed within the
parent AdapterView class (eg a ListView inside our ListFragment) which is
being bound to the underlying array using this adapter

J Receives parameters that describes
= [he position of the item to be displayed
= [he View being updated (or null)
s [he ViewGroup into which this new view will be placed

J Returns the new populated View instance as a result

d Acallto getItem() will return the value (object) stored at the specified index in the
underlying array

Adapters & ListViews

d A ListView receives its data via an Adapter. The adapter also defines how each
row is the ListView is displayed.

d The Adapter is assigned to the list via the setAdapter () /
setListAdapter () method on the ListView / ListFragment object.

 ListView calls the getVview () method on the adapter for each data element. In

this method the adapter determines the layout of the row and how the data is
mapped to the Views (our widgets) in this layout.

- Your row layout can also contain Views which interact with the underlying data
model via the adapter. E.G. our ‘Delete’ option — see later.

CoffeeMate 2.0

Code
Highlights
(2)

CoffeeListAdapter

public class CoffeelListAdapter extends ArrayAdapter<Coffee> {

private Context context: Our constructor, associating our data (our

private OnClickListener deletelListener; - list of Coffees) with the view we want to

- — — bind to (coffeerow)

public CoffeeListAdapter(Context context] OnClickListener deleteListener,\“72<_ ,
List<Coffee> coffeel[ist) X A reference for deleting a coffee

super(context, R.layout.coffeerow, coffeelList);

this.context = context;
this.deletelListener = deletelListener;
this.coffeelList = coffeelList;

S X
@Override ‘\
{

public View getView(int position, View convertView, ViewGroup parent)
CoffeeItem item = new Coffeeltem(context, parent, deletelListener,
coffeeList.get(position));
return item.view;

\}

@Override
public int getCount() { return coffeeList.size(); }

public List<Coffee> getCoffeelList() { return this.coffeelList; } Every time this method is called (based on the

@O‘éifrigeff tTten(int position)Billreturn coffeeList.get(position): IR position) we create a new ‘Coffeeltem’ — a new
ggvetiid: ee getitemiint positio eturn corteeList.getiposition)s ‘Row’ to add to the Parent ViewGroup (the ListView)

public long getItemId(int position) { return position; }
@Override
public int getPosition(Coffee c) { return coffeelList.index0f(c); }

Ul Design - Part 1 32

This class represents a
single row in our list

Coffeeltem

public class Coffeeltem {

View view; A Coffee Name €3.99 x
\'/ Coffee Shop 5.0*
public CoffeeItem(Context context, ViewGroup parent,
OnClickListener deletelListener, Coffee coffee)
LayoutInflater inflater = (LayoutInflater) context : ‘)
.getSystemService(Context.LAYOUT _INFLATER_SERVICE); Settlng the ROWS Id tO the
~view = inflater.inflate(R.layout.coffeerow, parent, false); Coffee id for Editing
view.setId(coffee.coffeeld); <
updateControls(coffee);
(: ‘ ’
@ Imagel/iew imgDelete = (ImageView) view.findViewById(R.id.imgDelete); |nﬂat|ng the ‘Current Row
imgDelete.setTag(coffee);
\ingelete. setOnClickListener(deleteListener);
}

/@ate void updateControls(Coffee coffee) { Updating the ‘Row’ with Coffee Data
((TextView) view.findViewById(R.id.rowCoffeeName)).setText(coffee.name);
((TextView) view.findViewById(R.id.rowCoffeeShop)).setText(coffee.shop);
((TextView) view.findViewById(R.id.rowRating)).setText(coffee.rating + " x");
((TextView) view.findViewById(R.id.rowPrice)).setText("€" +

new DecimalFormat("0.00").format(coffee.price)); /

ImageView imgIcon = (ImageView) view.findViewById(R.id.RowImage); ‘Tagging’ the Delete |mage with a
if (goffee.favourite == true) ' . Coffee for Deleting
imgIcon.setImageResource(R.drawable.ic_favourite_on);

_/

Ul Design - Part 1 33

else
imgIcon.setImageResource(R.drawable.ic_favourite_off);
R

coffeerow (Our Custom Layout)

CoffeeMate.2.0

A Coffee Name €3.99

'/ Coffee Shop

Component Tree

v [Device Screen
v [RelativeLayoutl
s Rowlmage (ImageView) - @drawable/ic_favourite_off

EaCh tlme QetVleWO iS Ca”ed; |t Creates ' imgDelete (ImageView) - @android:drawable/ic_delete
/4t rowCoffeeName (TextView) - "Coffee Name"

new Coffeeltem and binds the individual o freeN:) Cottee

: : AL rowCoffeeShop (TextView) - "Coffee Shop”
Views (widgets) above, to each element i rowRating (TextView) - *5.0 *
of the object array in the ArrayAdapter. /4t rowPrice (TextView) - "€3.99"

Ul Design - Part 1 34

Resulting ListView (inside our Fragment)

public void setupCoffees(){
coffeelList.add(new Coffee("Standard Black", "Some Shop",2.5,1.99,0));

coffeelList.add(new Coffee("Regular Joe", "Joe's Place",3.5,2.99,1));
coffeelList.add(new Coffee("Espresso"”, "Ardkeen Stores",4.5,1.49,1));

Our Setup method
initially gives us this list —

COFFEE CHECK SEARCH FAVOURITE
IN COFFEE'S COFFEE'S

Recently Added Coffee's

Standard Black
Some Shop

Regular Joe
Joe's Place

Espresso
Ardkeen Stores

ddrohan.gitbooks.io o

CoffeeMate 2.0

Code
Highlights
(3)

—dit a Coffee — class CoffeeFragment

@Override
public void onListItemClick(ListView 1, View v, int position, long id)

{
Bundle activityInfo = new Bundle();
activityInfo.putInt(“coffeeID", v.getId());

Intent goEdit = new Intent(getActivity(), Edit.class)s
goEdit.putExtras(activityInfo);

getActivity().startActivity(goEdit);
}

Remember we set the id of the
‘row’ (v) ? Here we retrieve it,
and store it in a Bundle so we
know which coffee to edit

Ul Design - Part 1 37

—dit a Coffee — class Edit

public class Edit extends Base {
private Context context;

private Boolean isFavourite; Retrieving the “id” of our selected
private Coffee aCoffee; %
private ImageView favouriteImage; COﬁ:ee frOm the bUﬂdle and “

finding it in the arraylist UpdatelaiCotfes A

@Override
public void onCreate(Bundle savedInstanceState) { 'régLHarJoe
super.onC rea’ge(savedInstanceState) H Joe's Place
context = this; :
Full Coffee Details

setContentView(R. layout.edit);
NEIOE kegular Joe

ivi = t+Extrac():-
' aCoffee = getCoffeeObject(activityInfo.getInt(“coffeeID")); Shop* joe's Place

K‘IjextView) findViewById(R.id.coffeeNameTextView)).setText(aCoffee.name); \ Brice 87199
((TextView) findViewById(R.id.coffeeShopTextView)).setText(aCoffee.shop);

Star Rating

((EditText)findViewById(R.id.nameEditText)).setText(aCoffee.name); * * * i
((EditText)findViewById(R.id.shopEditText)).setText(aCoffee.shop);
((EditText)findViewById(R.id.priceEditText)).setText(""+aCoffee.price);
((RatingBar) findViewById(R.id.coffeeRatingBar)).setRating((float)aCoffee.rating);

favouriteImage = (ImageView) findViewById(R.id.favouriteImageView);

\ i i UPDQFFEE
N Assigning our

if (aCoffee.favourite == true) { ddrohan.gitbooks.io
favouriteImage.setImageResource(R.drawable.ic_favourite_on); i ' '
isFavourite = true; Coffee ObJeCt O

} else { details to the

favouriteImage.setImageResource(R.drawable.ic_favourite_off); .
isFavourite = false; Wldgets on our

} layout

Delete a Coffee — class CoffeeFragment

@Override

public void onClick(View view) It the Views "Tag’ is a Coffee

{ Object, we know the delete
if (view.getTag() instanceof Coffee) image was clicked. so we can
{ ’
onCoffeeDelete ((Coffee) view.getTag()); delete the coffee
¥
}

public void onCoffeeDelete(final Coffee coffee)
{
String stringName = coffee.name;
AlertDialog.Builder builder = new AlertDialog.Builder(activity);
builder.setMessage("Are you sure you want to Delete the \'Coffee\' " + stringName + "?");
builder.setCancelable(false);

Base.coffeelList.remove(coffee); // remove from our list
listAdapter.coffeelList.remove(coffee); // update adapters data
listAdapter.notifyDataSetChanged(); "/ refresh adapter
}).setNegativeButton("No", (dialog, id) - . dialog.cancel(); });
AlertDialog alert = builder.create();
alert.show();

¥ As well as removing the coffee from our global list, we
need to remove it from the adapter too
(or otherwise create a whole new adapter reference)

Are you sure you want to Delete the
'Coffee' Regular Joe?

NO

YES

CoffeeMate 3.0 D

%

=

& ', [
5 3 CoffeeMate.3.0

Search Coffee's Search Coffee's

Favourite Coffee's

Enter a Coffee Title SI

Favourite Coffee's

o - N
All Types
COFFEECHECK SEARCH FAVOURITE i
IN COFFEE'S COFFEE'S
Favourites

Espresso €1.49
\V\(Avd’i«\n Stores 45+ x
, Standard Black €1.99 x
Some Shop 25*
Recently Added Coffee's
Espresso €1.49
Standard Black D 5:;2"2.22;’ o Ara‘i’(u‘n Stores 45+ x
Some Shop

Espresso

N

Regular Joe Y Ardkeen Stores
Joe's Place

Espresso
Ardkeen Stores

ddrohan.gitbooks.io

Still no Persistence
in this Version

Questions?

