
Produced

by

Department of Computing & Mathematics

Waterford Institute of Technology

http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)

Android Anatomy

Android Anatomy
 2!

Agenda

❑ Quick Recap - What is Android (and it’s Layered Framework)

❑ Important Android Application Components

❑ The Android Application Life cycle

❑ The “CoffeeMate ” Case Study – a first look…

Android Anatomy
 3!

What is Android? (Recap)

Android Anatomy
 4!

❑  An open source software toolkit created, updated and maintained by
Google and the OHA

■  30+ technology companies

■  Commitment to openness, shared vision, and concrete plans

❑  Designed for Mobile Devices

■  2.X series and previous: mobile phones

■  3.X series: extended to also support tablets

■  4.X series: unified API framework

■  5.X series: more integration with Google services and more tablet-

specific features, run on ‘wearable’ devices, TV, vehicles etc..

❑  Comprehensive Framework

Layered Software Framework (s/w stack)

Android Anatomy
 5!

Major Android Components

•  Based on the Model View Controller design

pattern.

•  Don’t think of your program as a linear

execution model:

•  Think of your program as existing in logical

blocks, each of which performs some
actions.

•  The blocks communicate back and forth via
message passing (Intents), etc…

•  Added advantage, physical user interaction
(screen clicks) and inter process interaction
can have the same programming interface

•  Also the scheduler can bring different
pieces of the app to life depending on
memory needs and program use

•  For each distinct logical piece of
program behavior you’ll write a Java
class (derived from a base class).

•  Activities/Fragments: Things the
user can see on the screen. Basically,
the ‘controller’ for each different screen
in your program.

•  Services: Code that isn’t associated
with a screen (background stuff, fairly
common)

•  Content providers: Provides an
interface to exchange data between
programs (usually SQL based)

•  You’ll also design your layouts (screens),
with various types of widgets (Views),
which is what the user sees via Activities
& Fragments

Android Anatomy
 6!

Activities

•  Activities manage (control) individual

screens (views) with which a user could
be interacting.

•  Your program specifies a top level screen
that runs upon application startup.

•  Each Activity performs its own actions, to
execute a method in, or launch, another
Activity use an Intent.

•  The Activity base class already provides
you with enough functionality to have a
screen which “does nothing”

•  Provides you with an empty canvas…

•  The activity allows you to set the top
level GUI container.

•  Then you instantiate some Views
(widgets), put them in a container
View (your layout), and set the
container as the Activity’s top level
View:

•  setContentView(View)

•  This is what gets displayed on the

screen when the Activity is running.

•  We won’t go too in depth on GUI

programming here, lots of
documentation.

•  The Activity is loaded by the Android
OS, then the appropriate methods are
called based on user interaction (back
button?)

Android Anatomy
 7!

Views

■  The View class is the basic User Interface (UI)

building block within Android and serves as the
base class for nearly all the widgets and layouts
within the SDK.

■  The UI of an Activity (or a Fragment) is built with widgets
classes (Button, TextView, EditText, etc) which inherent
from "android.view.View".

■  Layout of the views is managed by
"android.view.ViewGroups".

Android Anatomy
 8!

Intents

•  How does an Activity (or any other

runnable Android object) get
started?

•  We use the Intent class to ask the
Android OS to start some Activity,
Service, etc…

•  Then the OS schedules that Activity
to run, and that Activity has its
onCreate (or onResume, etc…)
method called.

•  Intents are used to represent most
inter-process requests in Android:

•  Dialing a number

•  Sending a text

•  Starting a new Activity within your

application

•  So the system will generate Intents,

and so will your app!

onCreate()!onRestart()!

ViewAllPOJOs Running!

User clicks on an
object to view!

Intent object to start the
ViewAPOJO!

ViewAPOJO running!

onCreate()!

User clicks back
button!

User starts your
app…!

Intent object to start the
ViewAllPOJOs!

Notice! Here the red transitions are the events initiated by the Android OS,
and the green transitions are created by your application!

Android Anatomy
 9!

Services

•  Services provide a way for your

application to handle events in the
background, without being
explicitly associated with a View.

•  However, services don’t reside in
their own thread

•  So don’t perform things like
network connections in a
service, you will block the main
thread

•  What can you do?

•  Use your Service class to

provide an interface to a
background thread

•  Can call back to main activity
using a Handler class

•  AsyncTask class

!
!
!

Downloading Threads (maybe thread pool?)!

Main Activity!

Service!

onButtonClick() called in currently
running activity!

Activity asks Service to
download specific item
(possibly via an intent) !

Worker Thread!
(downloading)!

New worker
thread!

Done downloading!(new WorkerThread()).start()!

User Selects something to download!

Android Anatomy
 10!

SQLite - Persistence

•  Eventually you’ll want to be able to store data

beyond the lifetime of your app.

•  You can use the SharedPreferences class to store

simple key-value pairs

•  Simple interface, call getSharedPreferences and then

use call getString, getBoolean, etc…

•  However, you’ll probably want to use more

complicated storage.

•  Android provides a Bundle class to share complex

objects

•  And ContentProviders provide inter process data

storage

•  The best solution is to use the Android
interface to SQLite:

•  Lightweight database based on SQL

•  Fairly powerful, can’t notice the

difference between SQLite and SQL
unless you have a large database

•  You make queries to the database in
standard SQL:

•  “SELECT ID, CITY, STATE FROM
STATION WHERE LAT_N > 51.7;”

•  Then your application provides a handler
to interface the SQL database to other
applications via a content provider:

Android Anatomy
 11!

The (Application) Activity Life Cycle

❑ In Android, an application is a set of activities with a

Linux process to contain them

■  However, an application DOES NOT EQUAL a

process

■  Due to low memory conditions, an activity might be

suspended at any time and its process discarded

⬥ The activity manager remembers the state of the

activity however and can reactivate it at any time

⬥ Thus, an activity may span multiple processes over

the life time of an application

Android Anatomy
 12!

The Activity Life Cycle

•  The Activity has a number of

predefined functions that you
override to handle events from
the system.

•  If you don’t specify what should
be done the system will perform
the default actions to handle
events.

•  Why would you want to handle
events such as onPause(),
etc… ?

•  You will probably want to do

things like release resources,
stop network connections,
etc…

Android Anatomy
 13!

Fragments

•  Fragments represents a behaviour or a portion

of a user interface in an Activity.

•  Introduced in Android 3.0 (API level 11),

primarily supports more dynamic and flexible UI
designs on larger screens.

•  You can combine multiple fragments in a single
activity to build a multi-pane UI and reuse a
fragment in multiple activities.

•  Each Fragment has its own lifecycle, receives its
own input events, and you can add or remove it
while the activity is running.

•  A fragment must always be embedded
in an activity and the fragment's lifecycle
is directly affected by the host activity's
lifecycle.

•  When you perform a fragment
transaction, you can also add it to a
back stack that's managed by the
activity.

•  The back stack allows the user to
reverse a fragment transaction (navigate
backwards), by pressing
the Back button.

•  When you add a fragment as a part of
your activity layout, it lives in a
ViewGroup inside the activity's view
hierarchy and the fragment defines its
own view layout.

Android Anatomy
 14!

❑  You should design each fragment as a modular and reusable
activity component.

❑ When designing your application to support both tablets and
handsets, you can reuse your fragments in different layout
configurations to optimize the user experience based on the
available screen space.

❑  For example, on a handset, it might be necessary to separate
fragments to provide a single-pane UI when more than one
cannot fit within the same activity. (Next Slide)

15!Android Anatomy

Designing Fragments

16!Android Anatomy

Designing Fragments

An example of how two UI modules defined by fragments can be combined into
one activity for a tablet design, but separated for a handset design.!

The Fragment Life Cycle

❑  To create a fragment, you must

subclass Fragment (or an existing
subclass of it).

❑  Has code that looks a lot like an Activity.
Contains callback methods similar to an
activity, such as onCreate(),
onStart(), onPause(), and onStop().

❑  Usually, you should implement at least
onCreate(), onCreateView() and
onPause()

Android Anatomy
 17!

So, how do I Design my App?

•  The way the system

architecture is set up is fairly
open:

•  App design is somewhat up

to you, but you still have to
live with the Android
execution model.

•  Start with the different
screens/layouts that the user
will see. These are controlled
by the different Activities that
will comprise your system.

•  Think about the transitions
between the screens, these will
be the Intents passed
between the Activities.

•  Think about what background services you
might need to incorporate.

•  Exchanging data

•  Listening for connections?

•  Periodically downloading network

information from a server?

•  Think about what information must be

stored in long term memory (SQLite) and
possibly design a content provider around it.

•  Now connect the Activities, services, etc…
with Intents…

•  Don’t forget good OOP J and#

•  USE THE DEVELOPER DOCs &
GUIDES (next few slides)

Android Anatomy
 18!

Android Anatomy
 19!

Android Anatomy
 20!

Android Anatomy
 21!

Android Anatomy
 22!

Android Anatomy
 23!

24!Android Anatomy

Common Controls

Android Anatomy
 25!

Buttons

Android Anatomy
 26!

TextFields (EditTexts & TextViews)

Android Anatomy
 27!

28!Android Anatomy

RadioGroup / RadioButtons

Android Anatomy
 29!

30!Android Anatomy

31!Android Anatomy

Pickers

Android Anatomy
 32!

Progress Bars

Android Anatomy
 33!

34!Android Anatomy

Ultimate Case Study!

Android Anatomy
 35!

CoffeeMate 1.0

Using Buttons,

Multiple Layouts

&

Menus

Android Anatomy
 36!

CoffeeMate 1.0

Android Anatomy
 37!

Project Structure – Version 1.0

■  5 java source files

■  5 xml layouts

■  1 xml file for a menu

■  4 separate xml files for

color, string, style &
dimension resources

Android Anatomy
 38!

Layout – home

Android Anatomy
 39!

XML View – home

Android Anatomy
 40!

Layout – content_home

Android Anatomy
 41!

Layout – Outline View

❑  Keep track of Outline view

❑ Name controls appropriately

Android Anatomy
 42!

XML View - content_home (1)

This part defines the 3 buttons
shown on the layout summary

slide. Each button is given an id
so that it can be found in Java

via ‘findViewById’, then
assigned an event handler via
setOnClickListener (or onClick)

The text (Button label) is taken

from strings.xml instead of
entered directly here, because

the same label will also be used
for other widgets later on.

Android Anatomy
 43!

Note the use of
an ‘onClick’

attribute!

XML View - content_home (2)

The add and help
screens are built and
designed in a similar

manner

Android Anatomy
 44!

CoffeeMate Event Handler

Android Anatomy
 45!

content_home!

Note the use of a ‘View’ object

strings.xml

content_home.xml (and the other
layouts) refer to these names with

@string/appName, @string/
addACoffeeLbl etc.

Each string is used as a resource
for one or more of the widgets on

out layouts.

colors.xml & styles.xml are very
similar in terms of content

Android Anatomy
 46!

Menus in CoffeeMate

Pressing the “Menu” button on the emulator brings up a
menu with the following entries

(we’ll modify this slightly in CoffeeMate 2.0)

Android Anatomy
 47!

Menus

❑ Menus are a common user interface component in many types

of applications.

❑ To provide a familiar and consistent user experience, you

should use the Menu APIs to present user actions and other
options in your activities.

❑ Beginning with Android 3.0 (API level 11), Android-powered
devices are no longer required to provide a
dedicated Menu button.

■  instead provide an action bar to present common user

actions.

Android Anatomy
 48!

Options Menu & Action Bar

❑ The options menu is the primary collection of menu items for

an activity.

■  It's where you should place actions that have a global

impact on the app, such as “Info”, “Help” and “Home” etc.

❑ If you're developing for Android 2.3 or lower, users can reveal

the options menu panel by pressing the Menu button.

❑ On Android 3.0 and higher, items from the options menu are

presented by the action bar as a combination of on-screen
action items and overflow options.

Android Anatomy
 49!

Enabling/Disabling Menu Items on the fly

❑ There may be times where you don’t want all your menu

options available to the user under certain situations

■  e.g – if you’ve no donations, why let them see the report?

❑ You can modify the options menu at runtime by overriding the
onPrepareOptionsMenu method

■  called each and every time the user presses

the MENU button.

Android Anatomy
 50!

Menus in CoffeMate

Menu Specification!

Note the use of
an ‘onClick’

attribute!

Android Anatomy
 51!

CoffeeMate Menu Event Handler

Android Anatomy
 52!

Menu Specification!

inflate this resource as a ‘Menu’ (creates the menu)

Note the use of a ‘MenuItem’ object

Aside - Why a ‘Base’ Class?

53!Android Anatomy

❑ Green Programming – Reduce, Reuse, Recycle

■  Reduce the amount of code we need to implement

the functionality required (Code Redundancy)

■  Reuse common code throughout the app/project

where possible/appropriate

■  Recycle existing code for use in other apps/projects

❑ All good for improving Design

CoffeeMate - Menu Event Handler Alternative

‘Help’ Screen launched

check which ‘menu item’ was
selected (by id)

Android Anatomy
 54!

Switching Activities - General Approach

❑ Switch between Activities with Intents when

■  Main screen has buttons and/or menus to navigate to other
Activities (your intent)

■  Return to original screen with “back” button (system intent)

❑ Syntax required to start new Activity

■  Java

Intent goToActivity = new Intent(this,OtherActivity.class);
startActivity(goToActivity);

■  XML

⬥ Requires an entry in AndroidManifest.xml (runtime error otherwise!)

Android Anatomy
 55!

CoffeeMate 1.0

Code

Highlights

Android Anatomy
 56!

class Base (our superclass)

A method to display a Dialog Window in the
current Activity

If you have never seen wildcards in generics
before, this just means that we can pass in

any subclass of Activity (as with Help &
Home below).

our list of Coffees (available/shared
between all our Activities)

Android Anatomy
 57!

class Add (1)

Android Anatomy
 58!

Our Listener Interface

Binding to our Widgets

Attaching the Listener to the button

class Add (2)

Android Anatomy
 59!

Our Event Handler Code

Adding the Coffee to our List

Returning to our ‘Home’ Activity

Questions? !

Android Anatomy
 60!

Appendix!

Android Anatomy
 61!

Android Components!

Android Anatomy
 62!

Content Providers (1)

❑  A component that stores and retrieves data and make it

accessible to all applications.

■  uses a standard interface (URI) to fulfill requests for data from other applications & it’s

one way to share data across applications.

⬥  e.g. android.provider.Contacts.Phones.CONTENT_URI

■  Android ships with a number of content providers for common data types (audio,
video, images, personal contact information, and so on) - SQLite DB

■  Android 4.0 introduces the Calendar Provider.

⬥  uri - Calendars.CONTENT_URI;

Android Anatomy
 63!

Content Providers (2)

•  Content providers abstract data storage

to other applications, activities, services,
etc…

•  Roughly SQL based.

•  You construct a ContentProvider class

that will override methods such as
insert(), delete(), and update().

•  Then you register your content provider
with a URI to handle different types of
objects.

•  A Unique Resource Identifier is kind of like a URL

•  For example, let’s say we want our
content provider to allow other
applications to access our database
of bicycles and also customers.

•  We define methods for inserting,
deleting, updating, etc… bicycles
and customers.

•  Then we publish two URIs:

•  BICYCLES_URI

•  CUSTOMERS_URI

•  Maybe more URIs for accessing
bicycles indexed by serial number?

Android Anatomy
 64!

Broadcast Receivers

❑  A component designed to respond to broadcast Intents.

■  Receives system wide messages and implicit intents

■  can be used to react to changed conditions in the system (external notifications or

alarms).

■  An application can register as a broadcast receiver for certain events and can be

started if such an event occurs. These events can come from Android itself (e.g.,
battery low) or from any program running on the system.

❑  An Activity or Service provides other applications with access to its
functionality by executing an Intent Receiver, a small piece of code
that responds to requests for data or services from other activities.

Android Anatomy
 65!

The Layered Framework!
slides paraphrase a blog post by Tim Bray (co-inventor of XML and currently

employed by Google to work on Android)!
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is!

!

Android Anatomy
 66!

The Layered Framework (1)

❑ Applications Layer

■  Android provides a set of core applications:

ü  Email Client

ü  SMS Program

ü  Calendar

ü  Maps

ü  Browser

ü  Contacts

ü  YOUR APP

ü  Etc

■  All applications are written using the Java language. These applications are executed by the

Dalvik Virtual Machine (DVM), similar to a Java Virtual Machine but with different bytecodes

Android Anatomy
 67!

The Layered Framework (2)

❑ Application Framework Layer

■  Enabling and simplifying the reuse of components

⬥  Developers have full access to the same framework APIs used by the core applications.

⬥  Users are allowed to replace components.

■  These services are used by developers to create Android applications that can be run in
the emulator or on a device

■  See next slide for more…..

Android Anatomy
 68!

The Layered Framework (3)

❑ Application Framework Layer Features

Feature
 Role

View
System

Used to build an application, including lists, grids, text
boxes, buttons, and embedded web browser

Content
Provider

Enabling applications to access data from other
applications or to share their own data

Resource
Manager

Providing access to non-code resources (localized strings, graphics, and layout
files)

Notification
Manager

Enabling all applications to display custom alerts in the
status bar

Activity
Manager

Managing the lifecycle of applications and providing
a common navigation (back) stack

We’ll be covering the above in more detail later on...!

Android Anatomy
 69!

The Layered Framework (4)

❑ Libraries Layer

■  Including a set of C/C++ libraries used by

components of the Android system

■  Exposed to developers through the Android

application framework

System C library/libc - a BSD (Berkeley Software Distribution) -derived implementation
of the standard C system library (libc), tuned for embedded Linux-based devices!

!
Media Framework/Libraries - based on PacketVideo's OpenCORE; the libraries

support playback and recording of many popular audio and video formats, as well
as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG!

!
Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications!
!

WebKit/LibWebCore - a modern web browser engine which powers both the
Android browser and an embeddable web view!

!
SGL (Scene Graph Library) - the underlying 2D graphics engine!

!
3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

either hardware 3D acceleration (where available) or the included, highly optimized
3D software rasterizer (shapes->pixels)!

!
FreeType - bitmap and vector font rendering!

!
SQLite - a powerful and lightweight relational database engine available to all

applications!

Android Anatomy
 70!

The Layered Framework (5)

❑ Core Runtime Libraries#

(changing to ART in Kit Kat)

■  Providing most of the functionality available in the core libraries of the Java language

■  APIs

§  Data Structures

§  Utilities

§  File Access

§  Network Access

§  Graphics

§  Etc

Next Slide!

Android Anatomy
 71!

The Layered Framework (6)

❑ Dalvik Virtual Machine (DVM)

§  Provides an environment on which every Android application runs

§  Each Android application runs in its own process, with its own instance of the Dalvik VM.

§  Dalvik has been written such that a device can run multiple VMs efficiently.

❑  Android Runtime (ART) 4.4 #

(see slide 12)

Android Anatomy
 72!

The Layered Framework (7)

❑ Dalvik Virtual Machine (Cont’d)

ü  Executing the Dalvik Executable (.dex) format

Ø  .dex format is optimized for minimal memory footprint.

Ø  Compilation

ü  Relying on the Linux Kernel for:

Ø  Threading

Ø  Low-level memory management

Android Anatomy
 73!

ART – Android Runtime

❑  Handles app execution in a fundamentally different way from Dalvik.

❑  Current runtime relies on a JIT compiler to interpret original bytecode

■  In a manner of speaking, apps are only partially compiled by developers

■  resulting code must go through an interpreter on a user's device each and every time it is run == Overhead

+ Inefficient

■  But the mechanism makes it easy for apps to run on a variety of hardware and architectures.

❑  ART pre-compiles that bytecode into machine language when apps are first installed,
turning them into truly native apps.

■  This process is called Ahead-Of-Time (AOT) compilation.

❑  By removing the need to spin up a new VM or run interpreted code, startup times can be
cut down immensely and ongoing execution will become faster.

Android Anatomy
 74!

The Layered Framework (8)

❑ Linux Kernel Layer

❑  At the bottom is the Linux kernel that has been augmented with extensions for Android

■  the extensions deal with power-savings, essentially adapting the Linux kernel to run on mobile devices

❑  Relying on Linux Kernel 2.6 for core system services / 3.8 in Kit Kat

■  Memory and Process Management

■  Network Stack

■  Driver Model

■  Security

❑  Providing an abstraction layer between the H/W and the rest of the S/W stack

Android Anatomy
 75!

The Application/Activity!
Lifecycle!

Android Anatomy
 76!

The Application/Activity Life Cycle

❑  Android is designed around the unique requirements of mobile

applications.

■  In particular, Android recognizes that resources (memory and battery, for example) are

limited on most mobile devices, and provides mechanisms to conserve those
resources.

❑  The mechanisms are evident in the Android Activity Lifecycle,
which defines the states or events that an activity goes through
from the time it is created until it finishes running.

Android Anatomy
 77!

The Activity Life Cycle

❑ onStop() and
onDestroy() are
optional and may never
be called

❑ If you need persistence,
the save needs to
happen in onPause()

Android Anatomy
 78!

The Activity Life Cycle

❑  An activity monitors and reacts to these events by instantiating methods that

override the Activity class methods for each event:

❑ onCreate

■  Called when an activity is first created. This is the place you normally create
your views, open any persistent data files your activity needs to use, and in
general initialize your activity.

■  When calling onCreate(), the Android framework is passed a Bundle object
that contains any activity state saved from when the activity ran before.

❑ onStart

■  Called just before an activity becomes visible on the screen. Once onStart()

completes, if your activity can become the foreground activity on the screen,
control will transfer to onResume().

■  If the activity cannot become the foreground activity for some reason, control
transfers to the onStop() method.

Android Anatomy
 79!

The Activity Life Cycle

❑ onResume

■  Called right after onStart() if your activity is the foreground activity on the
screen. At this point your activity is running and interacting with the user.
You are receiving keyboard and touch inputs, and the screen is
displaying your user interface.

■  onResume() is also called if your activity loses the foreground to another
activity, and that activity eventually exits, popping your activity back to
the foreground. This is where your activity would start (or resume) doing
things that are needed to update the user interface.

Android Anatomy
 80!

The Activity Life Cycle

❑ onPause

■  Called when Android is just about to resume a different
activity, giving that activity the foreground. At this point your
activity will no longer have access to the screen, so you
should stop doing things that consume battery and CPU
cycles unnecessarily.

⬥  If you are running an animation, no one is going to be able to see it, so you might as well

suspend it until you get the screen back. Your activity needs to take advantage of this
method to store any state that you will need in case your activity gains the foreground
again—and it is not guaranteed that your activity will resume.

■  Once you exit this method, Android may kill your activity at
any time without returning control to you.

Android Anatomy
 81!

The Activity Life Cycle

❑  onStop

■  Called when your activity is no longer visible, either because another
activity has taken the foreground or because your activity is being
destroyed.

❑  onDestroy

■  The last chance for your activity to do any processing before it is

destroyed. Normally you'd get to this point because the activity is
done and the framework called its finish method. But as mentioned
earlier, the method might be called because Android has decided it
needs the resources your activity is consuming.

Android Anatomy
 82!

Questions?!

Android Anatomy
 83!

