Mobile Application Development

David Drohan (ddrohan@wit.ie)

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

3 Waterford Institute of Technology
(\“\. T WNSTITJID TECNEOLAIOCHTA PHORT LARCE

(i —
T —

Sy

o=

X5

b~

Android Anatomy

Android Anatomy 2

Agenda

J Quick Recap - What is Android (and it's Layered Framework)

Jd Important Android Application Components
- The Android Application Life cycle

A The “CoffeeMate ” Case Study — a first look...

What is Android? (Recap) o

J An open source software toolkit created, updated and maintained by
Google and the OHA

- 30+ technology companies
- Commitment to openness, shared vision, and concrete plans
- Designed for Mobile Devices
2.X series and previous: mobile phones
3.X series: extended to also support tablets
4 X series: unified API framework

5.X series: more integration with Google services and more tablet-
specific features, run on ‘wearable’ devices, TV, vehicles etc _

J Comprehensive Framework

Layered Software Framework (s/w stack)

Webkit & Widget API
Location API GUI API Graphics API Media API

WebHKit Media Framework OpenMax
§ libc SQLite DMAI
§ Surface Manager SSL OpenGLES 2.0 Codec Engine
SGL FreeType DSP Link

i i LPDDR, NAND, One NAND,
Ry Drver Graphics Driver DSP Link Driver

UART, 12C, SP, McBSP, Timers,
Keypad USB OT6/Host, Ethernet

(Linux OMAP)

PowerVR SGX C64 +

Cortex A8 Integrated Peripherals 3D Graphics e e e e T s

OMAP3530 | RN NENE

[Big N.B.

Major Android Components for all thesel
« Based on the Model View Controller design * For each distinct logical piece of
pattern. program behavior you’ll write a Java
« Don’t think of your program as a linear class (derived from a base class).
ex?ﬁ?ntfgfr;c?&e ||c;rogram as existing in logical) ACtiVitieS/FragmentS: Things the
' ; user can see on the screen. Basically,
gg%;ss,.each of which performs some the ‘controller’ for each different screen

INn your program.
e Services: Code that isn’t associated

Added advantage, physical user interaction \évcl)trr%ﬁqgﬁ)r een (background stuft, fairly
(screen clicks) and inter process interaction ,
can have the same programming interface « Content prowders: Provides an

* The blocks communicate back and forth via
message passing (IntentS), etc...

Also the scheduler can bring different interface to exchange data between
pieces of the app to life depending on programs (usually SQL based)
memory needs and program use You'll also design your layouts (screens),

with various types of widgets (Views),
which is what the user sees via Activities
& Fragments

Activities

Activities manage (control) individual
screens (views) with which a user could
be interacting.

Your program specifies a top level screen
that runs upon application startup.

Each Activity performs its own actions, to
execute a method in, or launch, another

Activity use an Intent.

The Activity base class already provides
you with enough functionality to have a
screen which “does nothing”

Provides you with an empty canvas...

The activity allows you to set the top
level GUI container.

Then you instantiate some Views
(widgets), put them in a container
View (your layout), and set the
container as the Activity’s top level
View:

setContentView (View)

This is what gets displayed on the
screen when the Activity is running.

We won’t go too in depth on GUI
programming here, lots of
documentation.

The Activity is loaded by the Android
OS, then the appropriate methods are
called based on user interaction (back
button?)

Views

- The View class is the basic User Interface (Ul)
building block within Android and serves as the
base class for nearly all the widgets and layouts
within the SDK.

The Ul of an Activity (or a Fragment) is built with widgets

classes (Button, TextView, EditText, etc) which inherent
from "android.view.View".

Layout of the views is managed by
"android.view.ViewGroups".

CoffeeMate
ddrohan.gitbooks.io

Home

Add a Coffee
Search

View Favourites

Take a Photo

Communicate & Locate

< Share

[J ViewonMap

User starts your Intent object to start the

| ntents app... ViewAlIPOJOs
« How does an Activity (or any other onRestart() onCreate()
runnable Android object) get K
started? —
We use the Intent class to ask the ViewAllPOJOs Running
Android OS to start some Activity,

Service, etc...

* Then the OS schedules that Activity
to run, and that Activity has its
onCreate (or onResume, etc...) Intent object to start the
method called. ViewAPOJO

* |Intents are used to represent most
inter-process requests in Android:

Dialing a number
Sending a text
Starting a new Activity within your

T User clicks onjan
object to view

onCreate()

ViewAPOJO running Ieaalele el

application button
* So the system will generate Intents,
" . ! e . o, . :
and so will your app! Notice! Here e 0 rasions are e evens ietea by e Ancroc O3

Android Anatomy

l
Services

onButtonClick() called in currently

« Services provide a way for your running activity

application to handle events in the
background, without being
explicitly associated with a View.

* However, services don’t reside in
their own thread

So don’t perform things like
network connections in a
service, you will block the main

Activity asks Service to
download specific item

thread (possibly via an intent)
* What can you do?
- Use your Service class to
provide an interface to a
background thread
J . L (new WorkerThread()).star Done downloading
. Can call back to main activity
using a Handler class

New worker Worker Thread

AsyncTask class

thread (downloading)

Android Anatom-yA W

SQLite - Persistence

« Eventually you'll want to be able to store data
beyond the lifetime of your app.

You can use the SharedPreferences class to store
simple key-value pairs

Simple interface, call getSharedPreferences and then
use call getString, getBoolean, etc...
 However, you'll probably want to use more
complicated storage.

Android provides a Bundle class to share complex
objects

And ContentProviders provide inter process data
storage

The best solution is to use the Android
interface to SQLite:

Lightweight database based on SQL

Fairly powerful, can’t notice the
difference between SQLite and SQL
unless you have a large database

You make queries to the database in
standard SQL:

“‘SELECT ID, CITY, STATE FROM
STATION WHERE LAT_N > 51.7;”

Then your application provides a handler
to interface the SQL database to other
applications via a content provider:

The (Application) Activity Life Cycle

JIn Android, an application is a set of activities with a

Linux process to contain them

. However, an application DOES NOT EQUAL a
OrOCESS

- Due to low memory conditions, an activity might lbe

suspended at any time and its process discard
¢ The activity manager remembers the state o

ed

Fthe
activity however and can reactivate it at any t

ime

¢ Thus, an activity may span multiple processes over

the life time of an application

The Activity Life Cycle =

* The Activity has a number of

predefined functions that you

override to handle events from I — ﬂi"_
the system. | “backione e —
* If you don’t specify what should ——— |
be done the system will perform - CeeaE= Rk
the default actions to handle = il s
events. (e o e
« Why would you want to handle ot oftne acity |
events such as onPause(), e ap v oo |
etC. y ? ___need memory * onPause() . foreground .
You will probably want to do i
things like release resources, onst0p0
stop network connections, — —
etc... e D
——

Android Anatomy

Fragments
- Fragments represents a behaviour or a portion ~ * A fragment must always be embedded
of a user interface in an Activity. In an activity and the fragment's lifecycle
. . IS directly affected by the host activity's
* Introduced in Android 3.0 (APl level 11), ifecycle.
primarily supports more dynamic and flexible Ul . \Aihen you perform a fragment
designs on larger screens. transaction, you can also add it to a
* You can combine multiple fragments in a single back stack that's managed by the
activity to build a multi-pane Ul and reuse a activity.
fragment in multiple activities. * The back stack allows the user to

. - - N reverse a fragment transaction (navigate
Each Fragment has its own lifecycle, receives its backwards), Dy pressing

own input events, and you can add or remove it the Back button.

while the activity is running. When you add a fragment as a part of

your activity layout, it lives in a
ViewGroup inside the activity's view
hierarchy and the fragment defines its
own view layout.

Designing Fragments

- You should design each fragment as a modular and reusable
activity component.

J When designing your application to support both tablets and
handsets, you can reuse your fragments in different layout
configurations to optimize the user experience based on the
avallable screen space.

- For example, on a handset, it might be necessary to separate

fragments to provide a single-pane Ul when more than one
cannot fit within the same activity. (Next Slide)

Designing Fragments

Tablet Y Handset

Selecting an item

_ | Selecting an item
updates Fragment B W :

[starts Activity B l

(* N o r_:a |
I | :
\ J | :
Activity A contains | . Activity A contains Activity B contains |

Fragment A and Fragment B : Fragment A Fragment B :

An example of how two Ul modules defined by fragments can be combined into
one activity for a tablet design, but separated for a handset design.

Android Anatomy

The Fragment Life Cycle

d To create a fragment, you must s

subclass Fragment (or an existing =
SUbClaSS Of it). onCr:ate()

onCreateView() -

J Has code that looks a lot like an Activity. :

Contains callback methods similar toan ="
activity, such as onCreate(), et

onStart(), onPause(), and onStop(). ;

Fragment is
active

J Usually, you should implement at least l l

User navigates The fragment is
backward or added to the back
stack, then

onCreate(), onCreateView() and

onPause() R,

v v

onStop()

ack, r
oved/replaced removed/replaced

v v

onDestroyView()

The fragm
returns to tf
layout from th

back stack

L’ L
onDestroy()

v

onDetach()

v

(Fragment is \

destroyed

Activity State

Created

Started

Resumed

Paused

Stopped

Destroyed

Fragment Callbacks

onAttach()

v

onCreate()

v

onCreateView()

v

onActivityCreated()

'

onStart()

:

onResume()

!

onPause()

|

onStop()

:

onDestroyView()

v

onDestroy()

v

onDetach()

So, how do | Design my App'?

The way the system
architecture is set up is fairly
open:

App design is somewhat up
to you, but you still have to
live with the Android
execution model.

Start with the different

screens/layouts that the user
will see. These are controlled

by the different Activities that
will comprise your system.

Think about the fransitions
between the screens, these will

be the Intents passed
between the Activities.

Think about what background S€rvices you
might need to incorporate.

Exchanging data

Listening for connections?
Periodically downloading network
information from a server?

Think about what /nformation must be
stored in long term memory (SQLite) and
possibly design a content provider around it.

Now connect the Activities, services, etc...
with Intents...

Don’t forget good OOP © and

USE THE DEVELOPER DOCs &
GUIDES (next few slides)

P

Il Developers Design Develop Distribute Developer Console

Training AP Guides Reference Tools Google Services Samples

Get Started with
Android Studio

Everything you need to build incredible app experiences on
phones and tablets, Wear, TV, and Auto.

> Set up Android Studio
> Build your first app

> Learn about Android

> Sample projects

Latest

O, Enable Instant Run| Build, Exec

- %
I‘l Developers Design Develop

API Guides Reference Tools

Getting Started

Building Your First App

Supporting Different Devices

Managing the Activity Lifecycle

Building a Dynamic Ul with
Fragments

Saving Data

Interacting with Other Apps

Working with System
Permissions

Building Apps with
Content Sharing

Building Apps with
Multimedia

Building Apps with
Graphics & Animation

Building Apps with

et O $lam Nlaced

<

<

Distribute B Developer Console

Google Services Samples

Getting Started

Welcome to Training for Android developers. Here you'll find sets of lessons within classes that
describe how to accomplish a specific task with code samples you can re-use in your app. Classes
are organized into several groups you can see at the top-level of the left navigation.

This first group, Getting Started, teaches you the bare essentials for Android app development. If you're a new

Android app developer, you should complete each of these classes in order.

If you prefer to learn through interactive video training, " .
o Developing Android Apps @
check out this trailer for a course about the 1

fundamentals of Android development. PR\ NN 2 /‘Q
\
START THE VIDEO COURSE

Online video courses

If you prefer to learn through interactive video training, check out these free courses.

N

Design

P
l | Developers

Develop

Distribute

Training API Guides Reference Tools Google Services Samples

Introduction

A

App Fundamentals

Device Compatibility

System Permissions

App Components

App Resources

App Manifest

User Interface

Animation and Graphics

Computation

Media and Camera

Location and Sensors

Connectivity

Text and Input

v

B Developer Console

Introduction to Android

Android provides a rich application framework that allows you to build
innovative apps and games for mobile devices in a Java language

environment. The documents listed in the left navigation provide details

about how to build apps using Android's various APIs.

To learn how apps work, start with
App Fundamentals.

To begin coding right away, read
Building Your First App.

If you're new to Android development, it's important that you understand the following fundamental concepts

about the Android app framework:

Apps provide multiple entry points

Android apps are built as a combination of distinct
components that can be invoked individually. For
instance, an individual activity provides a single screen
for a user interface, and a service independently

performs work in the background.

From one component you can start another
component using an intent. You can even start a
component in a different app, such as an activity in a
maps app to show an address. This model provides
multiple entry points for a single app and allows any
app to behave as a user's "default” for an action that

other apps may invoke.

Open “developer.android.com/guide/index.html” in a new tab behind the current one

Apps adapt to different devices

Android provides an adaptive app framework that
allows you to provide unique resources for different
device configurations. For example, you can create
different XML layout files for different screen sizes and
the system determines which layout to apply based on

the current device's screen size.

You can query the availability of device features at
runtime if any app features require specific hardware
such as a camera. If necessary, you can also declare
features your app requires so app markets such as
Google Play Store do not allow installation on devices

that do not support that feature.

Learn more:

Q

s
l'l Developers Design Develop

Training API Guides Reference Tools

Introduction

App Components A

Intents and Intent Filters

Processes and Threads

App Resources

App Manifest

User Interface

Animation and Graphics

Computation

Media and Camera

Activities v
Services v
Content Providers v
App Widgets

Distribute

Google Services Samples

BLOG ARTICLES

Using DialogFragments

In this post, I'll show how to use DialogFragments
with the v4 support library (for backward
compatibility on pre-Honeycomb devices) to show a
simple edit dialog and return a result to the calling

Activity using an interface.

Fragments For All

Todav we've released a static librarv that exposes the

B Developer Console

ApPP
Components

Android's application framework lets you create rich
and innovative apps using a set of reusable
components. This section explains how you can
build the components that define the building blocks
of your app and how to connect them together using

intents.

INTENTS AND INTENT FILTERS

TRAINING

Managing the Activity Lifecycle

This class explains important lifecycle callback
methods that each Activity instance receives and
how you can use them so your activity does what the
user expects and does not consume system

resources when your activity doesn't need them.

Building a Dynamic Ul with Fragments

This class shows vou how to create a dvnamic user

Q

s
l'l Developers Design Develop Distribute

Training API Guides Reference Tools Google Services Samples

Introduction v /”ﬁ
App Components v h
i i | s —
— ——
EE I .
App Resources v 2 ~—p——
— — S—
l g —————— g
App Manifest v # { —— g e E
& — 7-:___
. [\ e [pm— E
User Interface A — —
T .
Overview w
Layouts v
Input Controls v
BLOG ARTICLES

Input Events

Say Goodbye to the Menu Button

Menus As Ice Cream Sandwich rolls out to more devices, it's
important that you begin to migrate your designs to
Settings the action bar in order to promote a consistent
Android user experience.
Dialogs
New Layout Widgets: Space and
Notifications GridLayout
Toasts Ice Cream Sandwich (ICS) sports two new widgets

Open “developer.android.com/guide/topics/ui/index.html” in a new tab behind the current one 1to support the richer user

B Developer Console

User Interface

Your app's user interface is everything that the user
can see and interact with. Android provides a variety
of pre-built Ul components such as structured layout
objects and Ul controls that allow you to build the
graphical user interface for your app. Android also
provides other Ul modules for special interfaces

such as dialogs, notifications, and menus.

OVERVIEW >

TRAINING

Implementing Effective Navigation

This class shows you how to plan out the high-level
screen hierarchy for your application and then
choose appropriate forms of navigation to allow
users to effectively and intuitively traverse your
content.

Designing for Multiple Screens

Android powers hundreds of device types with

several different screen sizes, ranging from small

&5
l‘l Developers Design

Training API Guides Reference Tools

Introduction

App Components

App Resources

App Manifest

User Interface

Overview

Layouts

Input Controls

Develop

ﬂjttons

Text Fields
Checkboxes
Radio Buttons
Toggle Buttons
Spinners

Pickers

Open "developer.androidw

“html” in a new tab behind the current one

~

Distribute

Google Services Samples

Input Controls

Input controls are the interactive components in your

app's user interface. Android provides a wide variety of Button
controls you can use in your Ul, such as buttons, text

fields, seek bars, checkboxes, zoom buttons, toggle Text field |
buttons, and many more. L -

Adding an input control to your Ul is as simple as

adding an XML element to your XML layout. For ——

example, here's a layout with a text field and button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill_parent"
android:orientation="horizontal">
<EditText android:id="@+id/edit_message"
android:layout_weight="1"
android:layout_width="@dp"
android:layout_height="wrap_content"
android:hint="@string/edit_message" />
<Button android:id="@+id/button_send"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button_send"
android:onClick="sendMessage" />
</LinearLayout>

B Developer Console

«q O

OFF

®

Q

Common Controls
P e

Button A push-button that can be pressed, or clicked, by the user to Button

perform an action.

Text field An editable text field. You can use the EditText ,
AutoCompleteTextView widget to create a text entry widget AutoCompleteTextView

that provides auto-complete suggestions

Checkbox An on/off switch that can be toggled by the user. You should CheckBox
use checkboxes when presenting users with a group of
selectable options that are not mutually exclusive.

Radio button Similar to checkboxes, except that only one option can be RadioGroup
selected in the group. RadioButton
Toggle button | An on/off button with a light indicator. ToggleButton
Spinner A drop-down list that allows users to select one value from a Spinner
set.

Pickers A dialog for users to select a single value for a set by using DatePicker ,
_/ up/down buttons or via a swipe gesture. Use a \TimePicker‘ /

DatePicker code> widget to enter the values for the date

(month, day, year) or a TimePicker widget to enter the
values for a time (hour, minute, AM/PM), which will be

formatted automatically for the user's locale.

Android Anatomy

p- -9
l‘l Developers Design Develop

Training API Guides Reference Tools

Introduction v
App Components v

App Resources

App Manifest v
User Interface A
Overview
Layouts v
Input Controls A
Buttons
Text Fields
Checkboxes

Radio Buttons
Toggle Buttons
Spinners

Pickers

Open “developer.android.com/guide/topics/ui/controls/button.html” in a new tab behind the current one

Distribute

Google Services Samples

Buttons

A button consists of text or an icon (or both text and an
icon) that communicates what action occurs when the user
touches it.

Alarm © (© Alarm

Depending on whether you want a button with text, an icon, or both,

you can create the button in your layout in three ways:

e With text, using the Button class:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content”
android:text="@string/button_text"
coo [/

e With anicon, using the ImageButton class:

<ImageButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/button_icon"

.. />

B Developer Console

In this document

> Responding to Click Events
> Using an OnClickListener
> Styling Your Button
> Borderless button

> Custom background

Key classes
> Button

> ImageButton

Button class with the android:drawableLeft attribute:

Q

Il Developers Design Develop Distribute B Developer Console

[])

|
| Training API Guides Reference Tools Google Services Samples
|

(Text Fields

App Components

A text field allows the user to type text into your app. It can

; App Resources be either single line or multi-line. Touching a text field places In this document
| the cursor and automatically displays the keyboard. In > Specifying the Keyboard Type
App Manifest addition to typing, text fields allow for a variety of other » Controlling other behaviors
activities, such as text selection (cut, copy, paste) and data > Specifying Keyboard Actions
L look-up via auto-completion. > Responding to action button
events
Overview You can add a text field to you layout with the EditText object. You > Setting a custom action
button label

should usually do so in your XML layout with a <EditText> element.
Layouts > Adding Other Keyboard Flags

> Providing Auto-complete
Suggestions

(™ Compose

Input Controls

Buttons Key classes
Text Fields > EditText

> AutoCompleteTextView
Checkboxes

Radio Buttons

‘ Toggle Buttons

Spinners
Pick g
chers Specifying the Keyboard Type
‘\ Open “developer.android.com/guide/topics/ui/controls/text.html” in a new tab behind the current one , .t types such as number, —

Developers Design Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

(Checkboxes |

App Components

Checkboxes allow the user to select one or more options

App Resources from a set. Typically, you should present each checkbox In this document
option in a vertical list. > Responding to Click Events
App Manifest
Sync Browser Key classes
User Interface y 3 ; 232
4 > CheckBox

Overview Sync Calendar

Layouts

Sync Contacts

Input Controls

To create each checkbox option, create a CheckBox in your layout. Because a set of checkbox options allows

Buttons
the user to select multiple items, each checkbox is managed separately and you must register a click listener for
Text Fields
each one.
Checkboxes
Radio Buttons Responding to Click Events

Toggle Buttons)))
When the user selects a checkbox, the CheckBox object receives an on-click event.

Spinners
To define the click event handler for a checkbox, add the android:onClick attribute to the <CheckBox>

Pickers element in your XML layout. The value for this attribute must be the name of the method you want to call in

response to a click event. The Activity hosting the layout must then implement the corresponding method.
Open “developer.android.com/guide/topics/ui/controls/checkbox.html” in a new tab behind the current one

m . . .
l'l Developers Design Develop Distribute B Developer Console Q

Training API Guides Reference Tools Google Services Samples

Introduction - R a d | O B U tt O n S

App Components v
Radio buttons allow the user to select one option from a set.
App Resources v You should use radio buttons for optional sets that are In this document
mutually exclusive if you think that the user needs to see all > Responding to Click Events
App Manifest v available options side-by-side. If it's not necessary to show
all options side-by-side, use a spinner instead. Key classes
User Interface A
> RadioButton
ATTENDING?)
Overview > RadioGroup
TRy s
@® Yes (O Maybe ONo
Layouts v
Input Controls - To create each radio button option, create a RadioButton in your layout. However, because radio buttons are
mutually exclusive, you must group them together inside a RadioGroup . By grouping them together, the system
Buttons ensures that only one radio button can be selected at a time.
Text Fields
Checkboxes Responding to Click Events

Radio Buttons

When the user selects one of the radio buttons, the corresponding RadioButton object receives an on-click
Toggle Buttons event.

Sl To define the click event handler for a button, add the android:onClick attribute to the <RadioButton>

Pickers element in your XML layout. The value for this attribute must be the name of the method you want to call in
response to a click event. The Activity hosting the layout must then implement the corresponding method.

Open “developer.android.com/guide/topics/ui/controls/radiobutton.html” in a new tab behind the current one

L N sidtan ARianta:

i
0! Developers Design

Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

Introduction

App Components

App Resources

App Manifest

User Interface

Overview

Layouts

Input Controls

Buttons
Text Fields
Checkboxes

Radio Buttons

Toggle Buttons

A toggle button allows the user to change a setting between
two states. In this document

> Responding to Button Presses
You can add a basic toggle button to your layout with the

ToggleButton object. Android 4.0 (API level 14) introduces another Key classes

A kind of toggle button called a switch that provides a slider control,
_ . , > ToggleButton
which you can add with a Switch object.

> Switch
If you need to change a button's state yourself, you can use the > CompoundButton
CompoundButton.setChecked() or CompoundButton.toggle()

methods.

R pron A on |

Toggle buttons Switches (in Android 4.0+)

Responding to Button Presses

Toggle Buttons

To detect when the user activates the button or switch, create an CompoundButton.0OnCheckedChangelListener

Spinners

Pickers

Input Events

object and assign it to the button by calling setOnCheckedChangeListener() . For example:

ToggleButton toggle = (ToggleButton) findvViewById(R.id.togglebutton);
toggle.setOnCheckedChangeListener(new CompoundButton.OnCheckedChangeListener() {
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
if (isChecked) {

Q

m . . .
I'I Developers Design Develop Distribute B Developer Console Q

Training API Guides Reference Tools Google Services Samples

Introduction

<

Spinners

App Components v
Spinners provide a quick way to select one value from a set.
App Resources v In the default state, a spinner shows its currently selected In this document
value. Touching the spinner displays a dropdown menu with > Populate the Spinner with User
App Manifest v | all other available values, from which the user can select a Choices
new one. > Responding to User Selections
User Interface A
V@ i H Key classes
. a malti.com ome
Overview Jay@g A > Spinner
Home > SpinnerAdapter
Layouts v
> AdapterView.OnItemSelectedListener
Input Controls A Work
Buttons Oth er
Text Fields
Checkboxes Custom
Radio Buttons
Toggle Buttons You can add a spinner to your layout with the Spinner object. You should usually do so in your XML layout with
Spi a <Spinner> element. For example:
pinners
Pickers <Spinner

android:id="@+id/planets_spinner"

Open “developer.android.com/guide/topics/ui/controls/spinner.html” in a new tab berhind the current one Lo

M. -an rantant+t?" /s

Hﬁﬂ Developers Design Develop Distribute B Developer Console

Training API Guides Reference Tools Google Services Samples

Introduction

App Components

App Resources

App Manifest

User Interface

[Pickers

Android provides controls for the user to pick a time or pick
a date as ready-to-use dialogs. Each picker provides controls
for selecting each part of the time (hour, minute, AM/PM) or
date (month, day, year). Using these pickers helps ensure
that your users can pick a time or date that is valid,
formatted correctly, and adjusted to the user's locale.

In this document

> Creating a Time Picker

> Extending DialogFragment
for a time picker

> Showing the time picker
> Creating a Date Picker

Overview > Extending DialogFragment
for a date picker
Layouts > Showing the date picker

Input Controls

Key classes

> DatePickerDialog

Buttons

> TimePickerDialog
Text Fields .

> DialogFragment
Checkboxes

Radio Buttons
Toggle Buttons

Spinners

Pickers

We recommend that you use DialogFragment to hosteach time or
date picker. The DialogFragment manages the dialog lifecycle for
you and allows you to display the pickers in different layout
configurations, such as in a basic dialog on handsets or as an

embedded part of the layout on large screens.

See also

> Fragments

Although DialogFragment was first added to the platform in Android 3.0 (API level 11), if your app supports

versions of Android older than 3.0—even as low as Android 1.6—you can use the DialogFragment class that's

Open “developer.android.com/guide/topics/ui/controls/pickers.html” in a new tab behind the current one

. wanliarard aAarmnatilhilityvg

Progress bars

Progress bars are for situations where the percentage completed can be determined. They give users a quick sense of how
much longer an operation will take.

(google calendar X

Google Calendar
1 GOOGLE INC. ¢
3 220KB/2.64MB

2 |

May 30,2013

17 (e ooty Thman

| »4 e e e e

I tumret gane

.mr——.
R L)

e)

[seet comen

b s &

A progress bar should always fill from 0% to 100% and never move backwards to a lower value. If multiple operations are
happening in sequence, use the progress bar to represent the delay as a whole, so that when the bar reaches 100%, it
doesn't return back to 0%.

=

4 : daveydrohan@gmail.com :
\) Google Developers O\ Google Maps Android API 0 Search Change account | Sign out "

@ Google Maps Android API

Add Google Maps to your Android app.

GET A KEY VIEW PRICING AND PLANS

HOME GUIDES REFERENCE SAMPLES SUPPORT SEND FEEDBACK

The best of Google Maps for every Android app

Build a custom map for your Android app using 3D buildings, indoor floor
plans and more.

¥ 41 500

FINANCIAL
DISTRICT

' Embarcadero

Sydney
King sy
)

@& Queen Victoria Building

Maps Imagery Customization

Ultimate Case Study

COffeeM ate Noah Drohan

noahtldrohan@gmail.com
Home
Add a Coffee
Search
View Favourites

Take a Photo

Communicate & Locate

< Share

1 View on Map

Recently Added Coffee’

Standard Black €1.99
25+

Some Shop

Regular Joe €2.99
Joe's Place 35+

Espresso €1.49
Ardkeen Stores 45+

ddrohan.gitbooks.io

CoffeeMate

 omoees
tmer a Coffee Title

All Types
Favourites
Regular Joe
Joe's Place

Espresso
Ardkeen Stores

ddrohan.gitbooks.io

= CoffeeMate

Recently Added Coffee's
Regular Joe

Joe's Place
Full Coffee Details

Name : Reqular Joe

Shop: Joe's Place

Price : 2.99

Star Rating

% % %k K

UPDATE COFFEE

ddrohan.gitbooks.io

CoffeeMate

Coffee Map

Mullinabro =1
/Gra/nnag/rl/ Woods Slievefue

Mocca Large €2.99 R711

Benny's Thomas St, Waterford, Ireland

E
w
Ra4s . Clovef
ount' /7 Meadows
Bawndaw S ‘
Knockhouse Wat Kilculliheen
RS

b

M 2y (L
N Z\

|

R710 . \
R675 VZ s

|
KI|C9/ha{/

o8

Waterford
Retail Rark
N\

CoffeeMate 1.0

Using Buttons,
Multiple Layouts

&
Menus

5554:Nexus_4_AP1_22

é CoffeeMate.1.0

COFFEE CHECK SEARCH FAVOURITE
IN COFFEE'S COFFEE'S

Recently Added Coffee's

You have no Coffee’s added, go have a coffee!

www.jumpyjosh.com

CoffeeMate 1.0

5554:Nexus_4_API_22

Coffee Check In

Star Rating

) & BAGAG %

SAVE COFFEE

www.jumpyjosh.com

)

5554:Noxus 4 AP1_22

CoffeeMate.1.0

CoffeeMate Help

This is the help screen for CoffeeMate

Basically if you need help on using this app, you
probably shouldn’t be using it

www.jumpyjosh.com

)

= 5554:Nexys_&_AP1 22

About CoffeeMate
Version 1.0.0
te provides the user with a quick

and easy way to manage a list of coffees
and your favourite coffees.

For more information about CoffeeMate or
to provide feedback please visit our
website

CoffeeMate.1.0>

0] projectFiles | o @%'#'I"I . .
e e Project Structure — Version 1.0

& AndroidManifest.xml
v [java
v [Elie.cm
v [Eactivities
© » Add
(© & Base
© & Help
© % Home
v [Elmodels \
© u Coffee
v [Edie.cm (androidTest)
@ % ApplicationTest
v [Edie.cm (test)
@ % ExampleUnitTest

’ ?‘r;drawable " 5 java SourCe files

v [Eldlayout
& add.xml

& content_home.xml n 5 Xml |ayo UtS

& help.xml ¢

) e —« 1 xml file for a menu
@ main_menu.xml &—

- Eamipmap - 4 separate xml files for

v [Edvalues

«{ 7: Structure | 13 1:Project

@ Captures

B &) < color, string, style &

> Edstyles.xml (2) dimenSion resourCeS

» (& Gradle Scripts

38

Android Anatomy

Layout — home

[=Y
© home.xml x

Palette B Ie [lv @ Nexus 4~ av E@AppTheme §=Homev ev 5'ﬁ'23v

Q@ @QB Y

Layouts

[] FrameLayout

[[7] LinearLayout (Horizontz
[LinearLayout (Vertical)
[]TableLayout

F=| TableRow

[T GridLayout
RelativeLayout
Widgets

Plain TextView

(46| Large Text

(46 Medium Text

Small Text

oK Button

ok Small Button

® RadioButton
CheckBox

o Switch

- ToggleButton

& ImageButton

&= ImageView

== ProgressBar (Large)
== ProgressBar (Normal)
== ProgressBar (Small)
== ProgressBar (Horizontal
101 SeekBar

J RatingBar

= Spinner

© WebView
Text Fields

Plain Text

Person Name
Password

CoffeeMate.1.0

COFFEE CHECK ~ SEARCH FAVOURITE
IN COFFEE'S COFFEE'S

Recently Added Coffee's

Item 1
Sub Item 1

Item 2
Sub Item 2

Youshave no Coffee's added, go have a coffee!
Item

Sub Item 3

Iltem 4
Sub Item 4

Android An

Component Tree

v [H Device Screen

v P CustomView - android.support.design.widget.CoordinatorLayout
» % CustomView - android.support.design.widget.AppBarLayout
Olinclude - @layout/content_home
7 fab (CustomView) - android.support.design.widget.FloatingActionButton

Properties

layout:height match_parent
view:class android.support.des
style

accessibilityLiveRegion
accessibilityTraversalAfter
accessibilityTraversalBefore
alpha

background
backgroundTint
backgroundTintMode
clickable

XML View — home

1 <?xml version="1.0" encoding="utf-8"7?>

2 (© <android.support.design.widget.CoordinatorLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 xmlns:app="http://schemas.android.com/apk/res-auto"

5 xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent"

6 android:layout_height="match_parent" android:fitsSystemWindows="true" tools:context=".Home">
7

8 <android.support.design.widget.AppBarLayout android:layout_height="wrap_content"

9 android:layout_width="match_parent" android:theme="@style/AppTheme.AppBarOverlay">
10

11 <android.support.v7.widget.Toolbar android:id="@+id/toolbar"

12 android:layout_width="match_parent" android:layout_height="7?attr/actionBarSize"
13 android:background="?attr/colorPrimary" app:popupTheme="@style/AppTheme.PopupOverlay" />
14

15 </android.support.design.widget.AppBarLayout>

16

17 [<include layout="@layout/content_home" />]

18

19 <android. support.design.widget.FloatingActionButton android:id="@+id/fab"

20 android:layout_width="wrap_content" android:layout_height="wrap_content"

21 android:layout_gravity="bottom|end" android:layout_margin="16dp"

22 android:src="@android:drawable/ic_dialog_info"

23 H app:backgroundTint="@color/colorPrimary" />

24

25 </android.support.design.widget.CoordinatorLayout>

Android Anatomy 40

Layout — content_home

E content_home.xml X

Palette -2 oy D‘.

Layouts
[FrameLayout

|:| LinearLayout (Horizontz:

[LinearLayout (Vertical)
[]TableLayout

= TableRow

[GridLayout

[F] RelativeLayout
Widgets

Plain TextView
Large Text

Medium Text

[4E] Small Text

ok Button

ok Small Button

(® RadioButton
CheckBox

o Switch

- ToggleButton

& ImageButton

&= ImageView

== ProgressBar (Large)
== ProgressBar (Normal)
== ProgressBar (Small)
== ProgressBar (Horizontal
101 SeekBar

s RatingBar

== Spinner

© WebView
Text Fields

Plain Text

Person Name
Password

Password (Numeric)
E-mail

Phone

Postal Address
Multiline Text

Time

a- @AppTheme =Homev @. 'ﬁ'ZSv

DO EEDEE EEEE B

Recently Added Coffee's
Sub Item 1

Iltem 2
Sub Item 2

Yotbhave no Coffee's added, go have a coffee!
Item
Sub Item 3

Iltem 4
Sub Item 4

Component Tree

v [I Shown in @layout/home
v I RelativeLayout
v ! LinearLayout (vertical)
v .IinearLayout (horizontal)
(8 addACoffeeBtn (Button) - @string/addACoffeeLbl
searchCoffeesBtn (Button) - @string/searchCoffeesLbl
[favouritesCoffeeBtn (Button) - @string/favouritesCoffeeLbl
B recentAddedBarTextView (TextView) - @string/recentlyViewedLbl
v IfERelativeLayout
B recentlyAddedList (ListView)
M recentlyAddedListEmpty (TextView) - @string/recentlyViewed...ssage
v WMl footerLinearLayout (LinearLayout)
[TextView - @string/appWebsite

Properties

layout:height
style
accessibilityLiveRegion
accessibilityTraversalAfter
accessibilityTraversalBefore
alpha
background
backgroundTint
backgroundTintMode
clickable
contentDescription
contextClickable
elevation
focusable
focusableInTouchMode
foreground

» foregroundGravity 1]

Android An

Layout — Outline View o

Component Tree

v Shown in @layout/home
v [H]RelativeLayout
v D LinearLayout (vertical)
v [[/]linearLayout (horizontal)
ok addACoffeeBtn (Button) - @string/addACoffeelbl
ok searchCoffeesBtn (Button) - @string/searchCoffeesLbl
ok favouritesCoffeeBtn (Button) - @string/favouritesCoffeelbl
/4t recentAddedBarTextView (TextView) - @string/recentlyViewedLbl
v [H]RelativeLayout
= recentlyAddedList (ListView)
lablrecentlyAddedListEmpty (TextView) - @string/recentlyViewed...ssage
tem2 v |:|footerLinearLayout (LinearLayout)
labl TextView - @string/appWebsite

Sub Item 1

Yon.éhave no Coffee's added, go have a coffee! :
Iltem
Sub Item 3

Iltem 4
Sub Item 4

 Keep track of Outline view
J Name controls appropriately

Android Anatomy

<?xml version="1.0" encoding="utf-8"?7>
<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
xmlns:app="http://schemas.android.com/apk/res-auto" android:layout_width="match_parent"
] android:layout_height="match_parent" android:paddingLeft="16dp"
android:paddingRight="16dp"
iew - content_home
— android:paddingBottom="16dp"
app:layout_behavior="android.support.design.widget.AppBarLayout$ScrollingVie..." tools:st

tools:context=".Home">
(=) 5554:Nexys 4 AP1 22

<Lin§z;t2{g?§rientation:"vertical"
. . android:layout_width="match_parent"
This part defines the 3 buttons android; Layout_height="natch parent">
é) Shown On the |ayOUt Summary <Lin:ﬁ£:§¥g?:rientat]}on:"hor.'izontal" }
slide. Each button is given an id android: Layout_heighee"wrap. content"
. . android:weightSum="1"
E;() thEit |t (361r1 k)Ea f()LJr](j |r] LJEi\/Ei android:id=g@+id/1inearLayout"
, (e . , andro%d:layoqt_g:avity::center_horizontal"
COFFEE CHECK SEARCH FAVOURITE Vla flnd\/IeWByld y then android:gravity="center">

IN COFFEE'S COFFEE'S

= assigned an event handler via
setOnClickListener (or onClick)

Button
android:id="@+id/addACoffeeBtn"
style="@android:style/Holo.Light.ButtonBar"
android:layout_width="100dp"
android:layout_height="140dp"
android:layout_margin="2dp"
android:drawableTop="@drawable/ic_add_location"

o PoversCtfook atdes g ersaotion The text (Button label) is taken android:text="Coree Check In
from strings.xml instead of M:::“id=°"Click="add-- />
entered directly here, because hroisid=roia sttt
the same label will also be used §§i§§h“§=t1§§§5p ——
for other widgets later on. e 115t an ‘onClick’

android:layout_gravity="center" />

<Button attri b Ute

android:id="@+id/favouritesCoffeeBtn"
style="@android:style/Holo.Light.ButtonBar"
android:layout_width="100dp"
android:layout_height="140dp"
android:layout_margin="2dp"
android:drawableTop="@drawable/ic_favourite_off"
android:text="Favourite Coffee's"
android:layout_gravity="center" />

</LinearLayout>

XML View - content home (2

5554:Noxus_4_APL22

é CoffeeMate.1.0

COFFEE CHECK SEARCH FAVOURITE
IN COFFEE'S COFFEE'S

The add and help
screens are built and
designed in a similar

manner

Recently Added Coffee's

(You have no Coffee’s added, go have a coffee!)
www.jumpyjosh.com 0

<TextView
android:id="@+id/recentAddedBarTextView"
style="@style/banner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android: text="Recently Added Coffee's"
android:layout_gravity="center_vertical"
android:gravity="center" />

<RelativelLayout

android:layout_width="fill_parent"

android:layout_height="fill_parent" >

<ListView
android:id="@+id/recentlyAddedList"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_above="@+id/footerLinearLayout"
android:layout_alignParentTop="true" />

<TextView
android:id="@+id/recentlyAddedListEmpty"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="center"
android:text="You have no Coffee's added, go have a coffee!"
android:textColor="@color/appFontColor"
android:layout_above="@+id/footerLinearLayout" />

<LinearlLayout
android:id="@+id/footerLinearLayout"
style="@style/footer"
android:background="@color/bannerBGColor"
android:layout_width="fill_parent"
android:layout_alignParentBottom="true"
android:layout_alignParentStart="true">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:paddingTop="10dip"
android: text="ddrohan.gitbooks.io"
android:textColor="@color/bgColor" />
</LinearLayout>
</Relativelayout>

</LinearLayout>

</Relativelayout>

CoffeeMate Event Handler ‘

public class Home extends Base {

content_home

TextView recentList; <Button
android:id="@+id/addACoffeeBtn"
@Override style="@android:style/Holo.Light.ButtonBar"
protected void onCreate(Bundle savedInstanceState) {...} android:layout_width="100dp"
Q android:layout_height="140dp"
: [f public void add(View,v) { goToActivity(this,Add.class,null); } android:layout_margin="2dp"

android:drawableTop="@drawable/ic_add_location"

@Override

protected void onResu
super.onResume();

() {

android:onClick="add" />

if(!coffeelList.isEmpty())
recentlList.setText(coffeeList.toString());

else
recentList.setTekt("You have no Coffee's added, go have a coffee!");

Note the use of a ‘View’ object

Android Anatomy

strings.xml

content_home.xml (and the other
layouts) refer to these names with

@strin Name, @string/
addACoffeel bl gtc.

Each string is used as a resource
for one or more of the widgets on
out layouts.

colors.xml & styles.xml are very
similar in terms of content

<resources>

<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string

<string
<string

<string

<string
<string
<string
<string
<string
<string
<string
<string
<string
<string
<string

</resources>

name="app_name'">CoffeeMate.1.0</string>
name="action_settings">Settings</string>
name="appHelpTitle">CoffeeMate Help</string>
name="appHelp">This is the help screen for CoffeeMate</string>
name="appHelpExtra“>Basically\, if you need help on using this
name="appDisplayName">CoffeeMate 1.0</string>
name="appDesc">CoffeeMate provides the user with a quick and ea
name="appMoreInfo">For more information about CoffeeMate or to
name="appAbout">About CoffeeMate</string>
name="appWebsite">ddrohan.gitbooks.io</string>
name="developer">Developed by Davey Drohan</string>

name="versionLabel">Current Version:</string>
name="version">1</string>

name-"searchCoffeesLb1">Search Coffee\ s</str1ng>
ring>

name="saveCoffeeBtn">Save Coffee</string>
name="recentlyViewedLbl">Recently Added Coffee\'s</string>
name="coffeeNameLbl">Name :</string>

name="coffeeShopLbl">Shop :</string>
name="coffeePriceLbl">Price :</string>
name="coffeeRatingLbl">Star Rating</string>
name="coffeeDetailsLbl">Full Coffee Details</string>
name="searchCoffeeNameHint">Enter a Coffee Title </string>
name="informationLbl">Information</string>
name="recentlyViewedListEmptyMessage">You have no Coffee\'s add

Menus in CoffeeMate

% un22

Pressing the “Menu” button on the emulator brings up a
menu with the following entries

‘g ‘Help

COFFEE CHECK SEARCH FAVOURITE
COFFEE'S COFFEE'S

Recently Added Coffee’s

(we’ll modify this slightly in CoffeeMate 2.0)

You have no Coffee's added, go have a coffee!

J Menus are a common user interface component in many types
of applications.

. To provide a familiar and consistent user experience, you
should use the Menu APIs to present user actions and other
options in your activities.

 Beginning with Android 3.0 (APl level 11), Android-powered
devices are no longer required to provide a
dedicated Menu button.

- Instead provide an action bar to present common user
actions.

Menus

J The options menu is the primary collection of menu items for
an activity.
- |t's where you should place actions that have a global
impact on the app, such as “Info”, “Help” and “Home” etc.

JIf you're developing for Android 2.3 or lower, users can reveal
the options menu panel by pressing the Menu button.

J On Android 3.0 and higher, items from the options menu are
presented by the action bar as a combination of on-screen
action items and overflow options.

Options Menu & Action Bar

—nabling/Disabling Menu ltems on the fly

Jd There may be times where you don’t want all your menu
options available to the user under certain situations

- e.g — if you’'ve no donations, why let them see the report?

- You can modify the options menu at runtime by overriding the
onPrepareOptionsMenu methoo

. called each and every time the user presses
the MENU button.

Menus in CoffeMate -

<m-enu xmlns:android="http://schemas.android.com/apk/res/android"
3 CoffeeMate 1.0) [3app) [src) [main) [ires) [xmlns:app="http://schemas.android.com/apk/res-auto"

Nilelgil| @5 Project FlleSI LI R I - A o xmlns:tools="http://schemas.android.com/tools" tools:context=".Home">
o v [zapp
v Drlanifests <item android:id="@+id/menu_info"
© AndroidManifest.xml android:icon='@drawable/about’
Y nga android:title="Info"
5 v Elie.cm android:orderInCategory="100" T .
§ » [Eactivities ___app:showAsAction="never" Menu SpeCIfICathn
2 » [EImodels android:onClick="menuInfo"/>
v » [Jie.cm (androidTest)
> Edie.cm (test) <item android:id="@+id/menu_help"
g v Cires android:icon="@drawable/help"
‘3 » [ddrawable android:title="Help"
S v Ellayout android:orderInCategory="100"
© = add;""l') | ___app:showAsAction="never"
©conten ome.Xxm] : " n
= - android:onClick="menuHelp"/>
S help.xm] = Note the use of
= home.xm| <item android:id="@+id/menu_home" an ‘onClick’
@ info.xml android:icon="@drawable/home"

attribute

v [EImenu
1 main_menu.xml
bl mipmap

android:title="Home"
android:orderInCategory="100"
app:showAsAction="ifRoom"

v values N .
= iy android:onClick="menuHome" />
© colors.xml

b [E1dimens.xml (2)
& strings.xml
» [Estyles.xml (2)
» (& Gradle Scripts

</menu>

Android Anatomy 51

CoffeeMate Menu Event Handler

public class Base extends AppCompatActivity { Menu SpGlelcathn

protected static ArrayList<Coffee> coffeeList = new ArrayList<~>();

<menu xmlns:android="http://schemas.android.com/apk/res/android"

. - - xmlns:app="http://schemas.android.com/apk/res-auto"
prOteCted void QOTOACtIVJ‘ty(ACtJ‘Vlty current, Lo Lo xmlns:tools="http://schemas.android.com/tools" tools:context=".Home">
Class<? extends Activity> activityClass,

Bundle bundle) {...} <item android:id="@+id/menu_info"
android:icon='@drawable/about"’
public void openInfoDialog(Activity current) {...} L bl s oo

android:orderInCategory="100"

@Override
public boolean onCreateOptionsMenu(Menu menu) {

android:onClick="menuInfo"/>

// Inflate the menu; this adds items to the action bar if it is pre <item android:id="g+id/menu_help"
android:icon="@drawable/help"

android:title="Help"

getMenuInflater().inflate(R.menu.main_menu, menu);

return true;
}

public void menuInfo(MenuItem m) { openInfobiplog(this); }
\

<item android:id="@+id/menu_home"

android:icon="@drawable/home"
public void menuHelp(MenuItem m) { goToActivit)(yhis, Help.class, null) android: title="Home"
\ android:orderInCategory="100"

public void menuHome(MenuItem m) { goToActivity(tﬂi§, Home.class, null)

} \\\\ </menu>

inflate this resource as a ‘Menu’ (creates the menu)

android:onClick="menuHome" />

Note the use of a ‘Menultem’ object

Android Anatomy 52

Aside - Why a ‘Base’ Class”

J Green Programming — Reduce, Reuse, Recycle

- Reduce the amount of code we need to implement
the functionality required (Code Redundancy)

- Reuse common code throughout the app/project
where possible/appropriate

- Recycle existing code for use in other apps/projects

JAIl good for improving Design

CoffeeMate - Menu Event Handler Alternative

‘Help’ Screen launched

check which ‘menu item’ was
selected (by id)

@0verride
public boolean onMenulItemSelected(int featureld
switch (item.getItemId()) {
case R.id.help:
goToActivity(this,Help.class, null);
break;
case R.id.info:
openInfoDialog(this);
break;
case R.1id. home:
goToActivity(this,Home.class, null);
break;
}

return super.onMenultemSelected(featureld,

, MenuItem item) {

item);

= CoffeeMate 1.0

CoffeeMate Help

This is the help screen for CoffeeMate

Basically if you need help on using this app, you
probably shouldn't be using it

www._jumpyjosh.com

® O O 2o Genymotion for personal use — S5 — 4.4.2 — APl 19 — 1080x...

=

Switching Activities - General Approach i
J Switch between Activities with Intents when

- Main screen has buttons and/or menus to navigate to other
Activities (your intent)

- Return to original screen with “back” button (system intent)
d Syntax required to start new Activity
- Java

Intent goToActivity = new Intent(this,OtherActivity.class);
startActivity (goToActivity) ;

- XML
< RGQUireS an eﬂtry IN AndroidManifest.xml (runtime error otherwise!)

CoffeeMate 1.0

Code
Highlights

=

~ourlist of Coffees (available/shared
protected static ArraylList<Coffee> coffeeList = new ArrayList<~>(); |« between all our Activities)

class Base (our superclass)

public class Base extends AppCompatActivity {

/6Fotected void goToActivity(Activity current,
Class<? extends Activity> activityClass,
Bundle bundle) {

Intent newActivity = new Intent(current, activityClass); If you have never seen wildcards in generics
) before, this just means that we can pass in
if (bundle !'= null) newActivity.putExtras(bundle); o any subclass of Activity (as with Help &
Home below).

current.startActivity(newActivity);

J

A

A method to display a Dialog Window in the

] public void openInfoDialog(Activity current) {...} L
current Activity

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main_menu, menu);
return true;

}
public void menuInfo(MenuItem m) { openInfoDialog(this); }
public void menuHelp(MenuItem m) { goToActivity(this, Help.class, null); }

public void menuHome(MenuItem m) { goToActivity(this, Home.class, null); }

. o’

class Add (1)

public class Add extends Base implements

)

Our Listener Interface

OnClickListener {

private String coffeeName, coffeeShop;
private double coffeePrice, ratingValue;
private EditText name, shop, price;

private RatingBar ratingBar;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.add);

Binding to our Widgets

Button saveButton = (Button) findViewById(R.id.saveCoffeeBtn);

name = (EditText) findViewById(R.id.nameEditText);
shop = (EditText) findViewById(R.id.shopEditText);
price = (Ed1tText) f1ndV1ewById(R id.priceEditText);
i = .id.coffeeRatingBar) ;

Attaching the Listener to the button

saveButton.setOnClickListener(this); |.

b mam

Android Anatomy

class Add (2)

public void onClick(View v) { —

Our Event Handler Code

coffeeName = name.getText().toString();
coffeeShop = shop.getText().toString();
try {

coffeePrice = Double.parseDouble(price.getText().toString());
} catch (NumberFormatException e) {

coffeePrice = 0.0;
}

ratingValue = ratingBar.getRating();

if ((coffeeName.length() > @) & (coffeeShop.length() > 0)
&& (price.length() > 0)) {
Coffee ¢ = new Coffee(coffeeName, coffeeShop, ratingValue,
coffeePrice, false);

Adding the Coffee to our List

coffeeList.add(c); <«
goToActivity(this,Home.class, null);
} else
Toast.makeText (
this, Returning to our ‘Home’ Activity

"You must Enter Something for "
+ "\'Name\', \'Shop\' and \'Price\'",
Toast.LENGTH_SHORT) .show() ;

Android Anatomy

Questions?

Android Anatomy 60

Appendix

Android Components

Android Anatomy 62

Content Providers (1)

J A component that stores and retrieves data and make it

accessible to all applications.

uses a standard interface (URI) to fulfill requests for data from other applications & it’s
one way to share data across applications.

¢ €.0. android.provider.Contacts.Phones.CONTENT URI

Android ships with a number of content providers for common data types (audio,
video, images, personal contact information, and so on) - SQLite DB

Android 4.0 introduces the Calendar Provider.
¢ Uri- Calendars.CONTENT URI,

Content Providers (2)

« (Content providers abstract data storage
to other applications, activities, services,
etc...

* Roughly SQL based.

* You construct a ContentProvider class
that will override methods such as
insert(), delete(), and update).

* Then you register your content provider
with a URI to handle different types of

objects.
A Unigue Resource Identifier is kind of like a URL

For example, let’s say we want our
content provider to allow other
applications to access our database
of bicycles and also customers.

We define methods for inserting,
deleting, updating, etc... bicycles
and customers.

Then we publish two URIs:
BICYCLES_URI
CUSTOMERS_URI

Maybe more URIs for accessing
bicycles indexed by serial number?

Broadcast Receilvers

d A component designed to respond to broadcast Intents.

Receives system wide messages and implicit intents
can be used to react to changed conditions in the system (external notifications or

alarms).
An application can register as a broadcast receiver for certain events and can be
started if such an event occurs. These events can come from Android itself (e.g.,

battery low) or from any program running on the system.
d An Activity or Service provides other applications with access to its
functionality by executing an Intent Receiver, a small piece of code
that responds to requests for data or services from other activities.

The Layered Framework

slides paraphrase a blog post by Tim Bray (co-inventor of XML and currently

employed by Google to work on Android)
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is

Android Anatomy

The Layered Framework (1)
J Applications Layer

m Android provides a set of core applications:
v Email Client

v SMS Program

v Calendar

v Maps

v Browser

v Contacts

v YOUR APP

v Etc

m All applications are written using the Java language. These applications are executed by the
Dalvik Virtual Machine (DVM), similar to a Java Virtual Machine but with different bytecodes)

The Layered Framework (2)

J Application Framework Layer

APPLICATION FRAMEWIORK

fovm ot ol e Window Content View Notification
Y g Manager Providers System Manager

Telephony Resource Location GTalk Service

Package Manager Manager Manager Manager

m Enabling and simplifying the reuse of components
¢ Developers have full access to the same framework APIs used by the core applications.
¢ Users are allowed to replace components.

- These services are used by developers to create Android applications that can be run in

the emulator or on a device

- See next slide for more.....

The Layered Framework (3)

J Application Framework Layer Features

Feature) Role)
View Used to build an application, including lists, grids, text

System) boxes, buttons, and embedded web browser)
Content Enabling applications to access data from other
Provider) applications or to share their own data)
Resource Providing access to non-code resources (localized strings, graphics, and layout
Manager) files))

Notification Enabling all applications to display custom alerts in the
Manager) status bar)
Activity Managing the lifecycle of applications and providing
Manager) a common navigation (back) stack)

We'll be covering the above in more detail later on...

@

System C library/libc - a BSD (Berkeley Software Distribution) -derived implementation

D I_I brarleS Layer of the standard C system library (libc), tuned for embedded Linux-based devices

Media Framework/Libraries - based on PacketVideo's OpenCORE; the libraries
support playback and recording of many popular audio and video formats, as well
Surface Manager Media SOlLite as static image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

Framework

The Layered Framework (4)

LIBRARIES

Surface Manager - manages access to the display subsystem and seamlessly
composites 2D and 3D graphic layers from multiple applications

OpenGL | ES FreeType WebKit

>or L WebKit/LibWebCore - a modern web browser engine which powers both the

Android browser and an embeddable web view

,)) SGL (Scene Graph Library) - the underlying 2D graphics engine
m Including a set of C/C++ libraries used by

3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

Components Of the Android SyStem either hardware 3D acceleration (where available) or the included, highly optimized
. 3D soft teri h ->pixel
m Exposed to developers through the Android software rasterizer (shapes->pixels)
app”cation framework FreeType - bitmap and vector font rendering

SQLite - a powerful and lightweight relational database engine available to all
applications

=

The Layered Framework (5))

J Core Runtime Libraries ANDROID RUNTIME

(changing to ART in Kit Kat) ext Slide

m Providing most of the functionality available in the core libraries of the Java language
APls
= Data Structures
= Utilities
= File Access
= Network Access
= Graphics
= FEtc

Android Anatomy 71

The Layered Framework (6))
 Dalvik Virtual Machine (DVM)

Provides an environment on which every Android application runs
Each Android application runs in its own process, with its own instance of the Dalvik VM.,
Dalvik has been written such that a device can run multiple VMs efficiently.

J Android Runtime (ART) 4.4
(see slide 12)

The Layered Framework (7))
 Dalvik Virtual Machine (Cont’d)

v Executing the Dalvik Executable (.dex) format
» .dex format is optimized for minimal memory footprint.
» Compilation

Java = «lass = dex
Java Compiler cdx

v Relying on the Linux Kernel for:
» Threading
» Low-level memory management

)

Android Anatomy

ART = Android Runtime G,

d Handles app execution in a fundamentally different way from Dalvik.

A Current runtime relies on a JIT compiler to interpret original bytecode
In a manner of speaking, apps are only partially compiled by developers

resulting code must go through an interpreter on a user's device each and every time it is run == Overhead
+ Inefficient

But the mechanism makes it easy for apps to run on a variety of hardware and architectures.
d ART pre-compiles that bytecode into machine language when apps are first installed,
turning them into truly native apps.
This process is called Ahead-Of-Time (AOT) compilation.

By removing the need to spin up a new VM or run interpreted code, startup times can be
cut down immensely and ongoing execution will become faster.

The Layered Framework (8)

 Linux Kernel Layer

LiINUX KERNEL

Display

Bluetooth Flash Memory Binder (IPC)
Driver

Camera Driver Daver Driver Driver

Audio Power
USB Driver Keypad Driver WiFi Driver Drti‘velrs Mana;n:ent

At the bottom is the Linux kernel that has been augmented with extensions for Android
the extensions deal with power-savings, essentially adapting the Linux kernel to run on mobile devices
d Relying on Linux Kernel 2.6 for core system services / 3.8 in Kit Kat
Memory and Process Management
Network Stack

Driver Model
Security

d Providing an abstraction layer between the H/W and the rest of the S/\W stack

The Application/Activity
Lifecycle

The Application/Activity Life Cycle

J Android is designed around the unigue requirements of mobile

applications.

In particular, Android recognizes that resources (memory and battery, for example) are
limited on most mobile devices, and provides mechanisms to conserve those
resources.

J The mechanisms are evident in the Android Activity Lifecycle,
which defines the states or events that an activity goes through
from the time it is created until it finishes running.

The Activity Life Cycle

JonStop () and

- onDestroy () are
s | optional and may never
==t be called
=t JIf you need persistence,
I T - the save needs to
o) .
| e ’ happen in onPause ()
a— r—

==

Android Anatomy

The Activity Life Cycle

- An activity monitors and reacts to these events by instantiating methods that
override the Activity class methods for each event:

d onCreate
Called when an activity is first created. This is the place you normally create
your views, open any persistent data files your activity needs to use, and in

general initialize your activity.
When calling onCreate(), the Android framework is passed a Bundle object
that contains any activity state saved from when the activity ran before.

m onStart

Called just before an activity becomes visible on the screen. Once onStart()
completes, if your activity can become the foreground activity on the screen,

control will transfer to onResume).
If the activity cannot become the foreground activity for some reason, control
transfers to the onStop() method.

The Activity Life Cycle

d onResume
Called right after onStart() if your activity is the foreground activity on the

screen. At this point your activity is running and interacting with the user.

You are receiving keyboard and touch inputs, and the screen is
displaying your user interface.

onResume() is also called if your activity loses the foreground to another
activity, and that activity eventually exits, popping your activity back to
the foreground. This is where your activity would start (or resume) doing
things that are needed to update the user interface.

The Activity Life Cycle

J onPause

. Called when Android is just about to resume a different
activity, giving that activity the foreground. At this point your
activity will no longer have access to the screen, so you
should stop doing things that consume battery and CPU

cycles unnecessarily.

¢ If you are running an animation, no one is going to be able to see it, so you might as well
suspend it until you get the screen back. Your activity needs to take advantage of this
method to store any state that you will need in case your activity gains the foreground
again—and it is not guaranteed that your activity will resume.

- Once you exit this method, Android may kill your activity at
any time without returning control to you.

The Activity Life Cycle o

J onStop

- Called when your activity is no longer visible, either because another
activity has taken the foreground or because your activity is being
destroyed.

 onDestroy

- The last chance for your activity to do any processing before it is
destroyed. Normally you'd get to this point because the activity is
done and the framework called its finish method. But as mentioned
earlier, the method might be called because Android has decided it
needs the resources your activity iIs consuming.

Questions?

