
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

EVENT HANDLING IN VUE

Vue.js
PART 5

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 5 3

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 5 4

Event Handling in Vue
DEALING WITH USER INTERACTION

VUEJS - PART 5 5

Introduction - Recap
As previously mentioned, we can use the v-on directive to listen to DOM events and run some
JavaScript when they’re triggered. For example:

VUEJS - PART 5 6

Result

Introduction - Recap
The logic for many event handlers will be more complex though, so keeping your JavaScript in
the value of the v-on attribute isn’t feasible. That’s why v-on can also accept the name of a
method you’d like to call.

VUEJS - PART 5 7

Result

Event Handling in Depth *
As you’ve probably guessed by now, Vue.js allows us to handle events triggered by the user.
Handling events helps add interactivity to web apps by responding to the user’s input. User
interactions with the view can trigger events on the DOM such as click and keyup, enter, etc.. As
previously stated, Vue provides us with the v-on directive to handle these events.

Taking another simple “count” example we can bind methods to events using their names :

The method addToCount specified in the template can be defined in the model as follows.

The addToCount method will take the input from addValue and add that to the count.

VUEJS - PART 5 8

Event Modifiers
There are frequently used calls that are made when handling events. Vue has made it easier for

us to implement these by using modifiers.

For example, event.preventDefault() is often called when handling events to prevent the

browsers default behaviour. Instead of having to write these out in the methods, we can use the

modifiers provided with the vue-on directive.

The above code sample would remove the default behavior of the a tag and just call

the addToCount method. If we didn’t add the modifier, the page would try to re-direct to the

path defined in the href attribute.

VUEJS - PART 5 9

Event Modifiers
The following modifiers are available in Vue.

• stop - Prevents event bubbling up the DOM tree

• prevent - Prevents default behaviour

• capture - Capture mode is used for event handling

• self - Only trigger if the target of the event is itself

• once - Run the function at most once

VUEJS - PART 5 10

Key Modifiers
Similar to event modifiers, we can add key modifiers that allow us to listen to a particular key
when handling key-related events such as keyup.

In the above example, when the keyup event is fired with the key code of 13 (the enter key),
the addToCount method gets called.

Since it’s difficult to remember all of the key codes, Vue provides a set of pre-defined keys. Some
examples are enter, tab, delete, esc, space and left, right, up, down .

Also, it’s possible to setup your own alias for key codes as follows:

VUEJS - PART 5 11

Component Communication & Custom Events
The normal method for communication involves props and events. This common pattern
provides a powerful way of communicating between components without introducing any
dependency or limitations on which components are involved.

To recap, Props allow you to pass any data type to a child component, and allow you to control
what sort of data your component receives. Prop updates are also reactive, allowing a child
component to update whenever parent data changes.

But what happens when the child component data changes and needs to inform the parent -
that’s where Custom Events come in handy.

VUEJS - PART 5 12

Custom Events provide a way to inform your parent components of changes in children.

Parent Template:

Child Component

VUEJS - PART 5 13

Component Communication & Custom Events

$emit triggers
“myEvent” in

parent

and we can pass up values

Using Props & $emit
The correct way to use Props & $emit is:

1. The Parent has data to manage, so you pass the
data to the Child component via props.

2. If the Child component needs to modify the
props data, assign that data to separate Child
data values when the component is mounted.

3. After the method is handled, the Parent opens
an interface to the Child.

4. The Child then $emit’s back any new value(s) to
the Parent.

VUEJS - PART 5 14

Other Points of Note
• You can create global event buses to pass events anywhere in your app (see

https://alligator.io/vuejs/global-event-bus/ for more info.
• Using v-model allows for combining props with events for two-way binding.

This is often used for input components.

VUEJS - PART 5 15

https://alligator.io/vuejs/global-event-bus/
https://vuejs.org/v2/api/

Case Study
LABS IN ACTION

VUEJS - PART 5 16

VUEJS - PART 5 17

Analysing our Case Study
So now that we’ve covered some more detail about Event Handling let’s take a closer look at how
we us them in DonationVue.

The main files of note are
• Donations.vue
• Donate.vue
• Edit.vue
• DonationForm.vue

so again basically everywhere J

Donations.vue

VUEJS - PART 5 18

@ (v-on) Click Events

Donate.vue (Parent)

VUEJS - PART 5 19

Passing in data via Props

@ (v-on) Custom Event

Edit.vue (Parent)

VUEJS - PART 5 20

Passing in data via Props

@ (v-on) Custom Event

DonationForm.vue (Child)

VUEJS - PART 5 21

Props from Parent

Assigning Parent data to Child data “emitting” Child data back to Parent
& triggering Event

Demo Application

VUEJS - PART 5 22

https://donationweb-vue.firebaseapp.com

https://donationweb-vue.firebaseapp.com/

References
qhttps://vuejs.org

qhttps://alligator.io/vuejs/events/

qhttps://alligator.io/vuejs/component-communication/

VUEJS - PART 5 23

https://vuejs.org/
https://alligator.io/vuejs/events/
https://alligator.io/vuejs/component-communication/

Questions?

VUEJS - PART 5 24

