
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

INTRODUCTION, TERMINOLOGY & OVERVIEW

Vue.js
PART 0

Objectives
To give you a foundation on which you can begin to understand all of the other
tutorials and documentation out there.

We will cover…
◦ Why it’s worth using it
◦ The Terminology (for all the resources available, including ours) and
◦ How to use the Vue ‘Building Blocks & Core Features’

We will also cover how to build your first Vue application (mostly in the Labs!)

VUEJS - PART 1 3

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 1 4

Overall Section Outline
1. Introduction – Why you should be using VueJS

2. Terminology & Overview – The critical foundation for understanding

3. Declarative Rendering & Reactivity – Keeping track of changes (Data Binding)

4. Components – Reusable functionality (Templates, Props & Slots)

5. Routing – Navigating the view (Router)

6. Directives– Extending HTML

7. Event Handling – Dealing with User Interaction

8. Filters – Changing the way we see things

9. Computed Properties & Watchers – Reacting to Data Change

10. Transitioning Effects – I like your <style>

11. Case Study – Labs in action

VUEJS - PART 1 5

Introduction
WHY YOU SHOULD BE USING VUE 2.0

VUEJS - PART 1 6

What is Vue.js?
qVue (pronounced /vjuː/, like view) is a progressive framework for building user interfaces.

qUnlike other monolithic frameworks, Vue is designed from the ground up to be incrementally
adoptable. The core library is focused on the view layer only, and is easy to pick up and
integrate with other libraries or existing projects.

qOn the other hand, Vue is also perfectly capable of powering sophisticated Single-Page
Applications when used in combination with modern tooling and supporting libraries.

VUEJS - PART 1 7

https://vuejs.org/v2/guide/single-file-components.html
https://github.com/vuejs/awesome-vue

The Founder
Evan You

q Previously worked as a Creative Technologist at Google (using AngularJS)

q Core Developer at Meteor
q From 2016 working fulltime on the VueJS Framework

VUEJS - PART 1 8

He later summed up his thought process, "I figured, what if I could just
extract the part that I really liked about Angular and build something
really lightweight"

History
qStarted in late 2013
qFirst release Feb. 2014 (v0.6)

qv1.0.0 Evangelion Oct. 2015

q Latest release v2.5.6 (July 2018)

VUEJS - PART 1 9

https://github.com/vuejs/vue/releases

MVVM Pattern (Model-View-ViewModel)
The well-ordered and perhaps the most reusable way to organize your client-side code is to use
the 'MVVM' pattern. The Model, View, ViewModel (MVVM pattern)is all about guiding you in
how to organize and structure your code to write maintainable, testable and extensible
applications.

Model − It simply holds the data and has nothing to do with any of the business logic.

ViewModel − It acts as the link/connection between the Model and View and makes stuff look
pretty.

View − It simply holds the formatted data and essentially delegates everything to the Model.

Vue is build around MVVM connecting View and Model
with 2-Way Reactive Binding

VUEJS - PART 1 10

MVVM Pattern (Model-View-ViewModel)

VUEJS - PART 1 11

Instance Lifecycle

VUEJS - PART 1 12

Github Stats – 15th July 2018

VUEJS - PART 1 13

React

Meteor

Angular

Vue

Github Stats – 20th August 2018

VUEJS - PART 1 14

React

Meteor

Angular

Vue

Ways to Install & Use Vue.js
q Standalone – Include <script> with the CDN and you are good to go
q NPM – Node package manager. Great with Browserify or Webpack
q Vue-CLI – Command line tool uses Webpack
q Bower – Client side package manager

VUEJS - PART 1 15

Vue Ecosystem (and a lot more)

VUEJS - PART 1 16

Terminology & Overview
THE CRITICAL FOUNDATION FOR UNDERSTANDING

VUEJS - PART 1 17

Vue Core Features

1. Declarative Rendering & Reactivity

2. Components

3. Routing

4. Directives

VUEJS - PART 1 18

5. Event Handling

6. Filters

7. Computed Properties & Watchers

8. Transitioning Effects

As previously mentioned, the core library is focused on the view layer only, and is easy to pick
up and integrate with other libraries or existing projects. But Vue is also perfectly capable of
powering sophisticated Single-Page Applications when used in combination with modern
tooling and supporting libraries.

What follows is a very brief overview of those core features of Vue which we’ll cover in more
detail later on, and demonstrate with examples from our Case study - DonationVue

https://vuejs.org/v2/guide/single-file-components.html
https://github.com/vuejs/awesome-vue

1. Declarative Rendering & Reactivity
At the core of Vue.js is a system that enables us to declaratively render data to the DOM using
straightforward template syntax:

VUEJS - PART 1 19

This looks pretty similar to rendering a string template, but Vue
has done a lot of work under the hood. The data and the DOM
are now linked, and everything is now reactive.

“Mustache” syntax

Result in Browser

1. Declarative Rendering & Reactivity
In addition to text interpolation, we can also bind element attributes like this:

VUEJS - PART 1 20

Directive Result in Browser

1. Declarative Rendering & Reactivity
And two-way data binding like this:

VUEJS - PART 1 21

Directive
Result in Browser

2. Components
The component system is another
important concept in Vue,
because it’s an abstraction that
allows us to build large-scale
applications composed of small,
self-contained, and often reusable
components. If we think about it,
almost any type of application
interface can be abstracted into a
tree of components:

VUEJS - PART 1 22

2. Components
Components can be included in a
single file:

VUEJS - PART 1 23

2. Components
Or modularized into their own
.vue files

VUEJS - PART 1 24

3. Routing
Routing is a key part of all websites and web
applications in one way or another. It plays a central role
in static HTML pages as well as in the most complex web
applications. Routing comes into play whenever you
want to use a URL in your application.

In Vue, for most Single Page Applications, it’s
recommended to use the officially-supported vue-router
library – which is what we’ll be doing.

It is often more convenient to identify a route with a
name, especially when linking to a route or performing
navigations. You can give a route a name in
the routes options while creating the Router instance:

VUEJS - PART 1 25

index.js

https://github.com/vuejs/vue-router

4. Directives
Directives are special attributes with the v- prefix. Directive attribute values are expected to be a
single JavaScript expression (with the exception of v-for, which will be discussed in later
sections).

A directive’s job is to reactively apply side effects to the DOM when the value of its expression
changes. For example:

Here, the v-if directive would remove/insert the <p> element based on the truthiness of the
value of the expression seen.

VUEJS - PART 1 26

4. Directives
Some directives can take an “argument”, denoted by a colon after the directive name.

For example, the v-on directive is used to reactively listen to DOM events:

Here the argument is the event name to listen to. We will talk about event handling in more
detail too (but a bit about it next) .

VUEJS - PART 1 27

5. Event Handling
As just mentioned, we can use the v-on directive to listen to DOM events and run some
JavaScript when they’re triggered. For example:

VUEJS - PART 1 28

Result

5. Event Handling
The logic for many event handlers will be more complex though, so keeping your JavaScript in
the value of the v-on attribute isn’t feasible. That’s why v-on can also accept the name of a
method you’d like to call.

VUEJS - PART 1 29

Result

6. Filters
Vue.js allows you to define filters that can be used to apply common text formatting. Filters are
usable in two places: mustache interpolations and v-bind expressions (the latter supported in
2.1.0+). Filters should be appended to the end of the JavaScript expression, denoted by the
“pipe” symbol:

VUEJS - PART 1 30

7. Computed Properties & Watchers
In-template expressions are very convenient, but they are meant for simple operations. Putting
too much logic in your templates can make them bloated and hard to maintain. For example:

At this point, the template is no longer simple and declarative. You have to look at it for a second
before realizing that it displays message in reverse. The problem is made worse when you want
to include the reversed message in your template more than once.

That’s why for any complex logic, you should use a computed property.

VUEJS - PART 1 31

7. Computed Properties & Watchers

VUEJS - PART 1 32

Result

7. Computed Properties & Watchers

VUEJS - PART 1 33

While computed properties are more appropriate in most cases, there are times when a custom
watcher is necessary. That’s why Vue provides a more generic way to react to data changes
through the watch option. This is most useful when you want to perform asynchronous or
expensive operations in response to changing data.

As you can see in the code on the right, we're
storing counter in data, and by using the name of
the property as the function name, we're able to
watch it.

When we reference that counter in watch, we can
observe any change to that property.

8. Transitioning Effects
Transitions in Vue allow you to apply effects to elements when they are inserted, updated or
removed from the DOM. For example, the classic fade:

The transition system has been a feature of Vue since the first version, but in version 2 there
have been some changes, mainly that it is now completely component-based (which is probably
a much better approach…).

We’ll take a closer look at Transitions in later sections (Part 3).

VUEJS - PART 1 34

Case Study
LABS IN ACTION

VUEJS - PART 1 35

Demo Application

VUEJS - PART 1 36

https://donationweb-vue.firebaseapp.com

https://donationweb-vue.firebaseapp.com/

References
qhttps://vuejs.org

qDavid Ličen, davidlicen.com

VUEJS - PART 1 37

https://vuejs.org/
http://davidlicen.com

Questions?

VUEJS - PART 1 38

