
Produced
by

Department of Computing & Mathematics
Waterford Institute of Technology

http://www.wit.ie

Web Application Development

David Drohan (ddrohan@wit.ie)

http://www.wit.ie
mailto:ddrohan@wit.ie?subject=

SERVER SIDE JAVASCRIPT

PART 1

Outline
1. Introduction – What Node is all about
2. Node Execution Model – Nodes Event-Driven, Non-Blocking I/O model
3. Asynchrony in Node – Events, Callbacks, Promises & Async/Awaits
4. Node Modules – The Building Blocks of Node
5. Express – A Framework for Node
6. REST – The Architectural Style of the Web
7. API Design – Exposing Application Functionality
8. REST in Express – Leveraging URLs, URI’s and HTTP

NODEJS - PART 1 3

Outline
1. Introduction – What Node is all about
2. Node Execution Model – Nodes Event-Driven, Non-Blocking I/O model
3. Asynchrony in Node – Events, Callbacks, Promises & Async/Awaits
4. Node Modules – The Building Blocks of Node
5. Express – A Framework for Node
6. REST – The Architectural Style of the Web
7. API Design – Exposing Application Functionality
8. REST in Express – Leveraging URLs, URI’s and HTTP

NODEJS - PART 1 4

Introduction
WHAT NODE IS ALL ABOUT

NODEJS - PART 1 5

So What is Node.js?
There are plenty of definitions to be found online. Let’s take a look at a couple of
the more popular ones:

This is what the project’s home page has to say:

NODEJS - PART 1 6

And this is what StackOverflow has to offer: https://stackoverflow.com/tags/node.js/info

So What is Node.js?
“non-blocking I/O”, “event-driven”, “asynchronous” — that’s
quite a lot to digest in one go.

So let’s approach this from a different angle and first, begin by
focusing on the other detail that both descriptions mention:

the V8 JavaScript engine.

NODEJS - PART 1 7

Node Is Built on Google Chrome’s
V8 JavaScript Engine
The V8 engine is the open-source JavaScript engine that runs in the Chrome,
Opera and Vivaldi browsers. Designed with performance in mind, it’s
responsible for compiling JavaScript directly to native machine code that your
computer can execute.
However, when we say that Node is built on the V8 engine, we don’t mean
that Node programs are executed in a browser. They aren’t. Rather, the creator
of Node (Ryan Dahl 2009) took the V8 engine and enhanced it with various
features, such as a file system API, an HTTP library, and a number of operating
system–related utility methods.
This means that Node.js is a program we can use to execute JavaScript on
our computers - In other words, it’s a JavaScript runtime.

NODEJS - PART 1 8

https://en.wikipedia.org/wiki/Ryan_Dahl

NODEJS - PART 1 9

Latest LTS (Long Term Support)
Version is v8.12.0

Latest stable current
version is v10.11.0 (nodejs.org)

(as at 24/09/18)

https://nodejs.org

NODEJS - PART 1 10

Node.js LTS Release Schedule

Introduction: Basic
In simple words Node.js is ‘server-side JavaScript’.

In not-so-simple words Node.js is a high-performance network applications
framework, well optimized for high concurrent environments.

It’s a command line tool.

In ‘Node.js’ , ‘.js’ doesn’t mean that its solely written in JavaScript. It is
40% JS and 60% C++. (next slide)

From the official site:
‘Node's goal is to provide an easy way to build scalable network programs’ (nodejs.org)

NODEJS - PART 1 11

V8
Thread

Pool
(libeio)

Event
Loop

(libev)

Node Bindings
(socket, http, etc.)

Node Standard Library

C

C++

JavaScript

Introduction: Node Architecture

NODEJS - PART 1 12

Introduction: Advanced (& Confusing)
As already mentioned, Node.js uses an event-driven, non-blocking I/O model.

It makes use of event-loops via JavaScript’s callback functionality to implement
the non-blocking I/O.

Programs for Node.js are written in JavaScript but not in the same JavaScript we
are use to. There is no DOM implementation provided by Node.js, i.e. you can not
do this:

var element = document.getElementById(“elementId”);

Everything inside Node.js runs in a single-thread (which must never block!).

If your program needs to wait for something (e.g., a response from some server
you contacted), it must provide a callback function.

NODEJS - PART 1 13

And more recently….

Local
Company

NODEJS - PART 1 14

Tools & Tech used with NodeJS (last 12 months)

NODEJS - PART 1 15

https://hackernoon.com/node-js-emerging-as-the-universal-development-framework-for-a-diversity-of-applications-c2e788290f5f

When to use Node.js?
Node.js is good for creating streaming based real-time services, web chat
applications, static file servers etc.

If you need high level concurrency and not worried about CPU-cycles.

If you are great at writing JavaScript code because then you can use the same
language at both the places: server-side and client-side.

ASIDE

The async/await feature has completely changed the way we write
asynchronous code, actually making it look and behave a little more like
synchronous code. Supported by Node.js since v7.6, this feature came as part
of the solution to the infamous ”Callback hell”.

More can be found at: http://stackoverflow.com/questions/5062614/how-to-decide-when-to-use-nodejs

NODEJS - PART 1 16

https://hackernoon.com/6-reasons-why-javascripts-async-await-blows-promises-away-tutorial-c7ec10518dd9
https://medium.com/@Abazhenov/using-async-await-in-express-with-node-8-b8af872c0016
http://callbackhell.com/
http://stackoverflow.com/questions/5062614/how-to-decide-when-to-use-nodejs

When to use Node.js?
USE CASE 1: Real-time Applications

Collaborative apps (Trello, Google Docs), live-chat, instant-messaging, and online
gaming are all examples of RTAs that benefit from a Node.js architecture.

These applications function within a time frame that the users sense as immediate
and current. Node.js specifications are the solution for the low-latency needed for
these programs to work efficiently.

It facilitates handling multiple client requests, enables reusing packages of library
code and the data sync between the client and the server happens very fast.

NODEJS - PART 1 17

When to use Node.js?
USE CASE 2: Single Page Applications
SPAs are web apps that load a single HTML page and dynamically update that
page as the user interacts with the app. Much of the work happens on the client
side, in JavaScript.
Even though these are an awesome evolution in web development, they come with
some problems when it comes to rendering. This can negatively affect
your SEO(Search engine Optimisation) performance for instance.
Server-side rendering in a Node.js environment is a popular option to solve this.

NODEJS - PART 1 18

When to use Node.js?
USE CASE 3: Scalability

Node.js won't ever get bigger than you need it to be. The beauty of it is that it's
minimalist enough to customize depending on the use case. Performance-wise,
that's key.

Even its name emphasizes that it's made to assemble multiple small
distributed nodes communicating with each other.

Node's modularity allows you to create small apps without having to deal with a
bloated, overkill ecosystem. You choose the tools you need for the job and then
scale as needed.

This scalability is not free from complications though, and if you're not careful,
Node.js can become... dangerous.

NODEJS - PART 1 19

Some Node.js benchmarks

NODEJS - PART 1

20

https://iwf1.com/apache-vs-nginx-vs-node-js-and-what-it-means-about-the-performance-of-wordpress-vs-ghost

About The Tests
All test were ran locally on an:

•Intel core i7-2600k machine of 4 cores and 8 threads.
•Gentoo Linux is the operating system used to run the tests.

The tool used for benchmarking: ApacheBench, Version 2.3 <$Revision: 1748469 $>.

The tests included a series of benchmarks, starting from 1,000 to 10,000 requests
and a concurrency of 100 to 1,000 – the results were quite surprising.

In addition, stress test to measure server function under high load was also issued.

https://iwf1.com/5-reasons-use-gentoo-linux/

NODEJS - PART 1 21

Apache vs Nginx vs Node: performance under requests load (per 100 concurrent users)

NODEJS - PART 1 22

Apache vs Nginx vs Node: performance under concurrent users load (per 1,000 requests)

When to not use Node.js
When you are doing heavy and CPU intensive calculations on the server
side, because event-loops are CPU hungry.

Node.js is out of beta, but it will keep on changing from one revision to
another and there is little backward compatibility at the moment (but it is
improving). A lot of the packages are also unstable and constantly changing.

Node.js is a no match for enterprise level application frameworks like Spring
(java), Django (python), Symfony (php) etc. Applications written on such
platforms are meant to be highly user interactive and involve complex
business logic.

Read further on disadvantages of Node.js on Quora:
http://www.quora.com/What-are-the-disadvantages-of-using-Node-js

NODEJS - PART 1 23

http://www.quora.com/What-are-the-disadvantages-of-using-Node-js

When to not use Node.js
Put bluntly, Node.js allows you to easily shoot yourself in the foot. Configuration &
customization come at a price, and if you're inexperienced or undisciplined, you might
lose yourself—or your client.

Contrary to a more conventional approach, you create the structure that supports your
backend. That involves a lot of decision-making, meaning that you have to know what
you're doing and where you are going if your project scales.

With other languages like Ruby and its well-known framework Ruby on Rails, for instance,
we were used to the paradigm "convention over configuration." These traditional
frameworks took developers by the hand and shone some light on the safe path.

With Node.js this goes head over heels. More freedom is given to developers, but the
road might get dark and scary if you make the wrong decisions.

And then you'll find out what "callback hell" really is….

NODEJS - PART 1 24

Now this doesn't mean that you can't build bigger server applications with
it, but you should always keep these factors in mind.

Even the creator of Node.js, Ryan Dahl, eventually realized the limitations of
the system before leaving to work on other projects. He was very
transparent about it:

"[...] I think Node is not the best system to build a massive server web. I
would use Go for that. And honestly, that’s the reason why I left Node. It
was the realization that: oh, actually, this is not the best server-side system
ever."

NODEJS - PART 1 25

When to not use Node.js

https://www.mappingthejourney.com/single-post/2017/08/31/episode-8-interview-with-ryan-dahl-creator-of-nodejs/
https://en.wikipedia.org/wiki/Go_(programming_language)

NODEJS - PART 1 26

Nodes Execution
Model
NODES EVENT-DRIVEN, NON-BLOCKING I/O MODEL

NODEJS - PART 1 27

Overview of Blocking vs Non-Blocking
Blocking is when the execution of additional JavaScript in the Node.js process
must wait until a non-JavaScript operation (such as I/O) completes. This happens
because the event loop is unable to continue running JavaScript while a blocking
operation is occurring.

In Node.js, JavaScript that exhibits poor performance due to being CPU
intensive, rather than waiting on a non-JavaScript operation, isn't typically
referred to as blocking. Synchronous methods in the Node.js standard library that
use libuv are the most commonly used blocking operations. Native modules may
also have blocking methods.

All of the I/O methods in the Node.js standard library provide asynchronous
versions, which are non-blocking, and accept callback functions. Some methods
also have blocking counterparts, which have names that end with Sync.

NODEJS - PART 1 28

Overview of Blocking vs Non-Blocking
Blocking methods execute synchronously and non-blocking methods
execute asynchronously.

Using the File System module as an example, this is a synchronous file read:

NODEJS - PART 1 29

And here is an equivalent asynchronous example:

Overview of Blocking vs Non-Blocking
The first example appears simpler than the second but has the disadvantage
of the second line blocking the execution of any additional JavaScript until the
entire file is read. Note that in the synchronous version if an error is thrown it
will need to be caught or the process will crash. In the asynchronous version,
it is up to the author to decide whether an error should throw as shown.

Let's expand our example a little bit:

NODEJS - PART 1 30

Overview of Blocking vs Non-Blocking
And here is a similar, but not equivalent asynchronous example:

NODEJS - PART 1 31

In the first example, console.log will be called before moreWork(). In the second
example fs.readFile() is non-blocking so JavaScript execution can continue
and moreWork() will be called first.

The ability to run moreWork() without waiting for the file read to complete is a key
design choice that allows for higher throughput.

Blocking | I/O Model
Example: ways in which a server can
process orders from customers

Hi, my name is Apache.
How may I take your

order?

• The server serves one customer at a
time.

• As each customer is deciding on their
order, the server sits and waits.

• When the customer decides on an
order, the server processes their order
and moves on to the next customer.

NODEJS - PART 1 32

Blocking | I/O Model

Hmm… still
thinking...

OMG she’s blocking me.
I could have ordered by now

!!

NODEJS - PART 1 33

Blocking | I/O Model

Hmm… still
thinking...

Pseudocode:

order1 = db.query(“SELECT * FROM
menu WHERE preference = most”)

order1.process

order2.process

NODEJS - PART 1 34

OMG she’s blocking me.
I could have ordered by now

!!

The more customers you want to serve at
once, the more cashier lines you’ll need.

Cashier lines ~ threads in computing

Multi-threaded processing

Parallel code execution

Multiple CPUs run at a time, utilizing
shared resources (memory)

Blocking | I/O Model

NODEJS - PART 1 35

Non-Blocking | I/O Model

I’m still thinking, but
callback to me when I’m

done.
While he’s thinking, I’ll

order the salmon.

• Node loops through the customers
and polls them to determine which
ones are ready to order.

• During a function’s queue, Node can
listen to another event.

• When the other customer is finally
ready to order, he’ll issue a callback.

• Asynchronous callbacks: “come back
to me when I’m finished”

• function called at the completion
of a given task.

NODEJS - PART 1 36

I’m still thinking, but
callback to me when I’m

done.
While he’s thinking, I’ll

order the salmon.

Node code

console.log(‘Hello’);

setTimeout(function() {
console.log(‘World’);

},
5000);

console.log(‘Bye’);

// Outputs:
// Hello
// Bye
// World

Allows for high concurrency

Non-Blocking | I/O Model

NODEJS - PART 1 37

I’m still thinking, but
callback to me when I’m

done.
While he’s thinking, I’ll

order the salmon. Single-threaded

No parallel code execution

Single CPU

Non-Blocking | I/O Model

NODEJS - PART 1 38

The Node.js Execution Model

NODEJS - PART 1 39

In very simplistic terms, when you connect to a traditional server, such as
Apache, it will spawn a new thread to handle the request. In a language such as
PHP or Ruby, any subsequent I/O operations (for example, interacting with a
database) block the execution of your code until the operation has completed.
That is, the server has to wait for the database lookup to complete before it can
move on to processing the result.
If new requests come in while this is happening, the server will spawn new
threads to deal with them. This is potentially inefficient, as a large number of
threads can cause a system to become sluggish — and, in the worse case, for
the site to go down.
The most common way to support more connections is to add more servers.

The Node.js Execution Model

NODEJS - PART 1 40

Node.js, however, is single-threaded. It is also event-driven, which means that
everything that happens in Node is in reaction to an event. For example, when a
new request comes in (one kind of event) the server will start processing it.

If it then encounters a blocking I/O operation, instead of waiting for this to
complete, it will register a callback before continuing to process the next event.

When the I/O operation has finished (another kind of event), the server will
execute the callback and continue working on the original request.

Under the hood, Node uses the libuv library to implement this asynchronous (i.e.
non-blocking) behaviour.

https://github.com/libuv/libuv

The Node.js Execution Model

NODEJS - PART 1 41

Node’s execution model causes the server very little overhead, and
consequently it’s capable of handling a large number of simultaneous
connections.

The traditional approach to scaling a Node app is to clone it and have the
cloned instances share the workload. Node.js even has a built-in module to
help you implement a cloning strategy on a single server.

The following image depicts Node’s execution model:

https://nodejs.org/api/cluster.html

The Node.js Execution Model

NODEJS - PART 1 42

Warning! Be careful to keep CPU
intensive operations off the event
loop.

Node.js Event-loop

NODEJS - PART 1 43

Are there any Downsides?
The fact that Node runs in a single thread does impose some limitations.

For example, blocking I/O calls should be avoided, and errors should always
be handled correctly for fear of crashing the entire process.

Some developers also dislike the callback-based style of coding that
JavaScript imposes (so much so that there’s even a site dedicated to the
horrors of writing asynchronous JavaScript).

But with the arrival of native Promises, followed closely by async
await (which is enabled by default as of Node version 7.6), this is rapidly
becoming a thing of the past. (we’ll cover these topics soon)

NODEJS - PART 1 44

http://callbackhell.com/
https://www.sitepoint.com/overview-javascript-promises/
https://www.sitepoint.com/simplifying-asynchronous-coding-async-functions/

Asynchrony in Node
EVENTS, CALLBACKS, PROMISES & ASYNC/AWAITS

NODEJS - PART 1 45

https://medium.com/codebuddies/getting-to-know-asynchronous-javascript-callbacks-promises-and-async-await-17e0673281ee

Background
According to Wikipedia:

“Asynchrony in computer programming refers to the occurrence of events
independently of the main program flow and ways to deal with such
events.”

In programming languages like Java or C# for instance the “main program
flow” happens on the main thread or process and “the occurrence of events
independently of the main program flow” is the spawning of new threads or
processes that runs code in parallel to the “main program flow”.

(Hence, multi-threaded programming)

NODEJS - PART 1 46

Background
This is not the case with JavaScript. That is because a JavaScript program
is single threaded and all code is executed in a sequence, not in parallel.

In JavaScript this is handled by using what is called an “asynchronous non-
blocking I/O model”. What that means is that while the execution of
JavaScript is blocking, I/O operations are not.

I/O operations can be fetching data over the internet with Ajax or over
WebSocket connections, querying data from a database such as MongoDB
or accessing the filesystem with the Node.js “fs” module.

All these kind of operations are done in parallel to the execution of your
code and it is not JavaScript that does these operations; to put it simply, the
underlying (V8) engine does it (and remember, Node.js is built on top of V8).

NODEJS - PART 1 47

Callbacks
In a synchronous program, you would write something along the lines of:

NODEJS - PART 1 48

This works just fine and is very typical in other development environments.
However, if fetchData() takes a long time to load the data, then this causes
the whole program to 'block’ – or just sitting still and waiting - until it loads
the data.
Node.js, being an asynchronous platform, doesn't wait around for things like
file I/O to finish - Node.js uses callbacks.

https://docs.nodejitsu.com/articles/getting-started/control-flow/what-are-callbacks

function processData () {
var data = fetchData ();
data += 1;

return data;
}

Callback Functions
So, for JavaScript to know when an asynchronous operation has a result (a
result being either returned data or an error that occurred during the
operation), it points to a function that will be executed once that result is
ready.

This function is what we call a “callback function”. Meanwhile,
JavaScript continues its normal execution of code.

NODEJS - PART 1 49

Here is an example of fetching data from an URL using a module called
“request”:

Callbacks

NODEJS - PART 1 50

const request = require(‘request’);
request('https://www.somepage.com’, function(error, response, body) {

if(error){
// Handle error.

}
else {

// Successful, do something with the result.
}

});

Callbacks : arrow notation

NODEJS - PART 1 51

const request = require(‘request’);
request('https://www.somepage.com', (error, response, body) => {

if(error){
// Handle error.

}
else {

// Successful, do something with the result.
}

});

Callbacks
As you can see, “request” takes an anonymous function (the callback) as its
last argument.
This function is not executed together with the code above. It is saved to be
executed later once the underlying I/O operation of fetching data over HTTP(s)
is done.
The underlying HTTP(s) request is an asynchronous operation and does not
block the execution of the rest of the JavaScript code.
The callback function is put on a sort of queue called the “event loop” until it
will be executed with a result from the request.

NODEJS - PART 1 52

Callback Hell
Callbacks are a good way to declare what will happen once an I/O operation
has a result, but what if you want to use that data in order to make another
request?

You can only handle the result of the request (if we use the previous example)
within the callback function provided.

In this example the variable “result” will not have a value when printed to the
console at the last line:

NODEJS - PART 1 53

Callback Hell

NODEJS - PART 1 54

const request = require(‘request’);
let result;
request('https://www.somepage.com', (error, response, body) => {

if(error){
// Handle error.

}
else {

// Successful, do something with the result.
result = body;

}

});
console.log(result);

Callback Hell
The last line will output “undefined” to the console because at the time that
line is being executed, the callback has not been called and completed.

So if we want to do a second request based on the result of the first one,
we have to do it inside the callback function of the first request because that
is where the result will be available:

NODEJS - PART 1 55

Callback Hell

NODEJS - PART 1 56

request('http://www.somepage.com’, (error, response, body) => {

if(error){
// Handle error.
}

else {
request(`http://www.somepage.com/${body.someValue}`, (nxtError, nxtResponse, nxtBody) => {

if(nxtError){
// Handle error.

}
else {

// Use nxtBody for something
}

});
}

});

Callback Hell
When you have a callback in a callback like this, the code tends to be a bit
less readable and a bit messy. In some cases you may have a callback in a
callback in a callback or even a callback in a callback in a callback in a
callback. You get the point: it gets messy – very messy.

One thing to note here is the first argument in every callback function will
contain an error if something went wrong, or will be empty if all went well.

This pattern is called “error first callbacks” and is very common. It is the
standard pattern for callback-based APIs in Node.js. This means that for
every callback declared we need to check if there is an error and that just
adds to the mess when dealing with nested callbacks.

This is the anti-pattern that has been named “callback hell”.

NODEJS - PART 1 57

Defining an Error-First Callback
There’s really only two rules for defining an error-first callback:

The first argument of the callback is reserved for an error object. If an error
occurred, it will be returned by the first err argument.

The second argument of the callback is reserved for any successful
response data. If no error occurred, err will be set to null and any successful
data will be returned in the second argument.

NODEJS - PART 1 58

fs.readFile('/foo.txt', (error, data) => {

// Need to handle possible error.
console.log(data);
}

});

Defining an Error-First Callback
fs.readFile() takes in a file path to read from, and calls your callback once it
has finished.

If all goes well, the file contents are returned in the data argument.

But if something goes wrong (the file doesn’t exist, permission is denied,
etc) the first error argument will be populated with an error object containing
information about the problem.

Its up to you, the callback creator, to properly handle this error. You can
throw an error if you want your entire application to shutdown. Or if you’re in
the middle of some asynchronous flow you can propagate that error out to
the next callback. The choice depends on both the situation and the desired
behavior.

NODEJS - PART 1 59

Defining an Error-First Callback

NODEJS - PART 1 60

fs.readFile('/foo.txt’, function(error, data) {

if(error) {
// handle possible error here.

return;
}

// Do whatever with data.

console.log(data);
}

});

Or…

NODEJS - PART 1 61

fs.readFile('/foo.txt', (error, data) => {

if(error) {
// handle possible error here.

return;
}

// Do whatever with data.

console.log(data);
}

});

Callbacks Vs Promises
A promise is an object that wraps an asynchronous operation and notifies
when it’s done. This sounds exactly like callbacks, but the important
differences are in the usage of Promises.

Instead of providing a callback, a promise has its own methods which you
call to tell the promise what will happen when it is successful or when it fails.

The methods a promise provides are “then(…)” for when a successful result
is available and “catch(…)” for when something went wrong.

There are lots of frameworks for creating and dealing with promises in
JavaScript, but native JavaScript promises were introduced in ECMAScript
2015 (ES6).

NODEJS - PART 1 62

Understanding Promises
"Imagine you are a kid. Your mom promises you that she'll get you a new
phone next week.”

You don't know if you will get that phone until next week. Your mom can
either really buy you a brand new phone, or stand you up and withhold the phone
if she is not happy (Bummer!) – That’s a promise.

A promise has 3 states. They are:

1. Promise is pending: You don't know if you will get that phone until next
week.

2. Promise is resolved: Your mom really buys you a brand new phone.

3. Promise is rejected: You don't get a new phone because your mom is not
happy.

NODEJS - PART 1 63

Creating a Promise

NODEJS - PART 1 64

Consuming Promises

NODEJS - PART 1 65

Chaining Promises
Let's say, you, the kid, promise your friend that you will show them the new phone when
your mom buys you one – That’s another promise.

NODEJS - PART 1 66

Chaining Promises
In the previous example, you might notice we didn't call reject. It's optional.

We can shorten this example by using Promise.resolve instead.

NODEJS - PART 1 67

Chaining Promises
Let's chain the promises.
You, the kid can only
start the showOff
promise after the
willIGetNewPhone
promise.

NODEJS - PART 1 68

Chaining Promises
Promises are asynchronous - Why? Because life (or JS) waits for no man.

You, the kid, wouldn't stop playing while waiting for your mom’s promise (the
new phone). Right? That's something we call asynchronous, the code will
run without blocking or waiting for the result. Anything that needs to wait for
a promise to proceed, you put that in a .then.

NODEJS - PART 1 69

Chaining Promises

NODEJS - PART 1 70

Chaining Promises

NODEJS - PART 1 71

Promises & ECMAScript 6 (ES6)
The demo code works out of the box because ES6 supports promises
natively. In addition, with ES6 functions, we can further simplify the code
with fat arrow => and use const and let.

NODEJS - PART 1 72

Promises & ECMAScript 6 (ES6)

NODEJS - PART 1 73

Promises & ES7 – Async/Await
Async/Await is a language feature that is a part of the ES7 standard. It was
implemented in version 7.6 of NodeJs. If you are new to JavaScript this
concept might be a bit hard to wrap your head around, but I would advise
that you still give it a try. You don’t have to use it if you don’t want to. You
will be fine with just using Promises.

Async/Await is the next step in the evolution of handling asynchronous
operations in JavaScript. It gives you two new keywords to use in your
code: “async” and “await”. Async is for declaring that a function will handle
asynchronous operations and await is used to declare that we want to
“await” the result of an asynchronous operation inside a function that has
the async keyword.

It makes the asynchronous syntax look prettier and easier to understand,
without the .then and .catch.

NODEJS - PART 1 74

Promises & ES7 – Async/Await

NODEJS - PART 1 75

Promises & ES7 – Async/Await

NODEJS - PART 1 76

Promises & ES7 – Async/Await

NODEJS - PART 1 77

NODEJS - PART 1 78

https://scotch.io/tutorials/javascript-promises-for-dummies

Node Modules
THE BUILDING BLOCKS OF NODE

NODEJS - PART 1 79

Node Modules
When you write Node.js applications, you could actually put all your code
into one huge index.js file, no matter how large or complex your application
is. The Node.js interpreter doesn’t care. But in terms of code organization,
you would end up with a hard to understand and hard to debug mess quite
quickly. So as a developer, you should care about how to structure your
code. This is where modules come in.

You can think of Node.js modules as JavaScript libraries - a certain part of
your overall codebase (for example, a collection of functions) which you
want to keep together, but which you also want to keep separated from the
rest of your codebase to keep things cleanly separated.

NODEJS - PART 1 80

Built-in Modules
Even if we don’t create any Node.js modules ourselves (more on that next),
we already have modules at our disposal because the Node.js environment
provides built-in modules for us – for example :

Here, requiring the http module gives us direct access to an http object,
whose functions, like createServer, we can then use.

NODEJS - PART 1 81

External Modules
The built-in modules which ship with Node.js allow to solve a lot of coding
problems without reinventing the wheel for every new application, but what
really boosts Node.js programming productivity is the huge ecosystem of
open source modules provided by the Node.js community.

These modules can be integrated into our codebase, too, but because they
are not built-in and don’t ship directly with each installation of Node.js, it is
not enough to require them from your own code. You need to install the
codebase containing the external module locally first, which is made very
easy thanks to NPM, the Node Package Manager.

NODEJS - PART 1 82

NPM
➢ Common npm commands:

➢ npm init initialize a package.json file

➢ npm install <package name> -g install a package, if –g option is given
package will be installed globally, --save and --save-dev will add
package to your dependencies

➢ npm install install packages listed in package.json

➢ npm ls –g listed local packages (without –g) or global packages (with –g)

➢ npm update <package name> update a package

NODEJS - PART 1 83

External Modules
Node.js relies heavily on modules and allows you to also create you own.

Creating a module is easy, just put your JavaScript code in a separate js file
and include it in your code by using the keyword require, like:

Libraries in Node.js are called packages and they can be installed by typing

NPM downloads and installs modules, placing them into a node_modules
folder in your current folder.

NODEJS - PART 1 84

var modulex = require(‘./modulex’);

npm install “package_name”; //installs in current folder
//package should be available in npm registry @ nmpjs.org

Creating your own Node Modules

NODEJS - PART 1 85

donations.js

app.js

app.js

Defines what
‘require’ returns

The require search
● Require searches for modules based on path

specified:

● Just providing the module name will search in
node_modules folder

NODEJS - PART 1 86

var myMod = require('./myModule'); //current dir
var myMod = require('../myModule'); //parent dir
var myMod = require('../modules/myModule');

var myMod = require('myModule');

Resources & References
Official Tutorial – https://nodejs.org/documentation/tutorials/
Official API – https://nodejs.org/api/
Developer Guide – https://nodejs.org/documentation
Video Tutorials – http://nodetuts.com
Video Introduction – https://www.youtube.com/watch?v=FqMIyTH9wSg
YouTube Channel – https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg
Articles, explanations, tutorials – https://nodejs.org/community/
https://www.sitepoint.com/an-introduction-to-node-js/
https://snipcart.com/blog/javascript-nodejs-backend-development
https://scotch.io/tutorials/javascript-promises-for-dummies
https://www.nodebeginner.org/blog/post/nodejs-tutorial-what-are-node.js-modules/

NODEJS - PART 1 87

https://nodejs.org/documentation/tutorials/
https://nodejs.org/api/
https://nodejs.org/documentation
http://nodetuts.com
https://www.youtube.com/watch?v=FqMIyTH9wSg
https://www.youtube.com/channel/UCvhIsEIBIfWSn_Fod8FuuGg
https://nodejs.org/community/
https://www.sitepoint.com/an-introduction-to-node-js/
https://snipcart.com/blog/javascript-nodejs-backend-development
https://scotch.io/tutorials/javascript-promises-for-dummies
https://www.nodebeginner.org/blog/post/nodejs-tutorial-what-are-node.js-modules/

Questions?

NODEJS - PART 1 88

